Ejector Jet Noise Suppressor for Hypersonic Transport at Takeoff

2021 ◽  
Author(s):  
Yuta Kurihara ◽  
Mikiya Araki ◽  
Juan C. Gonzalez Palencia ◽  
Takayuki Kojima ◽  
Hideyuki Taguchi
Keyword(s):  
2017 ◽  
Vol 65 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Zhe Chen ◽  
Jiu-Hui Wu ◽  
A-Dan Ren ◽  
Xin Chen ◽  
Zhen Huang

2021 ◽  
Vol 20 (1-2) ◽  
pp. 4-34
Author(s):  
Reda R Mankbadi ◽  
Saman Salehian

In this work we propose replacing the conventional flat-surface airframe that shields the engine by a wavy surface. The basic principle is to design a wavy pattern to reflect the incoming near-field flow and acoustic perturbations into waves of a particular dominant frequency. The reflected waves will then excite the corresponding frequency of the large-scale structure in the initial region of the jet’s shear layer. By designing the frequency of the reflected waves to be the harmonic of the fundamental frequency that corresponds to the radiated peak noise, the two frequency-modes interact nonlinearly. With the appropriate phase difference, the harmonic dampens the fundamental as it extracts energy from it to amplify. The outcome is a reduction in the peak noise. To evaluate this concept, we conducted Detached Eddy Simulations for a rectangular supersonic jet with and without the wavy shield and verified our numerical results with experimental data for a free jet, as well as, for a jet with an adjacent flat surface. Results show that the proposed wavy surface reduces the jet noise as compared to that of the corresponding flat surface by as much as 4 dB.


AIAA Journal ◽  
2010 ◽  
Vol 48 (2) ◽  
pp. 510-511
Author(s):  
K. Viswanathan ◽  
M. J. Czech
Keyword(s):  

1993 ◽  
Author(s):  
Philip Morris ◽  
Thonse Bhat
Keyword(s):  

1979 ◽  
Author(s):  
J. CLAUSS, JR. ◽  
B. WRIGHT ◽  
G. BOWIE
Keyword(s):  

Author(s):  
Clifford A. Brown

Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet-Surface Interaction Tests are intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. The initial goal is to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet-surface interaction is creating additional noise, and (2) determine regions of interest for future, more detailed, tests. To meet these objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer and (2) as a reflecting surface on the opposite side of the jet from the observer. The surface length was varied between 2 and 20 jet diameters downstream of the nozzle exit. Similarly, the radial distance from the jet centerline to the surface face was varied between 1 and 16 jet diameters. Far-field and phased array noise data were acquired at each combination of surface length and radial location using two nozzles operating at jet exit conditions across several flow regimes: subsonic cold, subsonic hot, underexpanded, ideally expanded, and overexpanded supersonic. The far-field noise results, discussed here, show where the jet noise is partially shielded by the surface and where jet-surface interaction noise dominates the low frequency spectrum as a surface extends downstream and approaches the jet plume.


Sign in / Sign up

Export Citation Format

Share Document