Load Factor Control of a Scaled Flight Test Vehicle using Nonlinear Dynamic Inversion

2022 ◽  
Author(s):  
Philipp Hastedt ◽  
Julian Theis ◽  
Nicolas Sedlmair ◽  
Frank Thielecke
2020 ◽  
Vol 12 ◽  
pp. 175682932096192
Author(s):  
F Binz ◽  
D Moormann

Recently, the concept of incremental nonlinear dynamic inversion has seen an increasing adoption as an attitude control method for a variety of aircraft configurations. The reasons for this are good stability and robustness properties, moderate computation requirements and low requirements on modelling fidelity. While previous work investigated the robust stability properties of incremental nonlinear dynamic inversion, the actual closed-loop performance may degrade severely in the face of model uncertainty. We address this issue by first analysing the effects of modelling errors on the closed-loop performance by observing the movement of the system poles. Based on this, we analyse the neccessary modelling fidelity and propose simple modelling methods for the usual actuators found on small-scale electric aircraft. Finally, we analyse the actuator models using (flight) test data where possible.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Eunro Kim ◽  
Inseok Yang ◽  
Dongik Lee

The time-delay robust nonlinear dynamic inversion (TDRNDI) control technique is proposed to synchronize time-delay Chen systems. The time-delay Chen circuit is simple but exhibits complex irregular (chaotic) behavior. For this reason, this circuit can be efficiently used to encrypt messages for secure communication. In this paper, the nonlinear control-based chaos synchronization problem is considered. The proposed TDRNDI controller is a modified version of a robust nonlinear dynamic inversion (RNDI) applicable to chaotic systems, including time-delay systems. The performance and feasibility of the proposed TDRNDI controller are demonstrated by conducting numerical simulations with application to a secure communication network.


2003 ◽  
Vol 40 (1) ◽  
pp. 64-71 ◽  
Author(s):  
R. R. da Costa ◽  
Q. P. Chu ◽  
J. A. Mulder

Sign in / Sign up

Export Citation Format

Share Document