Validation of a High-Fidelity Supersonic Parachute Inflation Dynamics Model and Best Practice

2022 ◽  
Author(s):  
Faisal As'ad ◽  
Philip Avery ◽  
Charbel Farhat ◽  
Jason Rabinovitch ◽  
Marcus Lobbia
Author(s):  
S. C¸ag˘lar Bas¸lamıs¸lı ◽  
Selim Solmaz

In this paper, a control oriented rational tire model is developed and incorporated in a two-track vehicle dynamics model for the prospective design of vehicle dynamics controllers. The tire model proposed in this paper is an enhancement over previous rational models which have taken into account only the peaking and saturation behavior disregarding all other force generation characteristics. Simulation results have been conducted to compare the dynamics of a vehicle model equipped with a Magic Formula tire model, a rational tire model available in the literature and the present rational tire model. It has been observed that the proposed tire model results in vehicle responses that closely follow those obtained with the Magic Formula even for extreme driving scenarios conducted on roads with low adhesion coefficient.


Author(s):  
Daniel Z. Huang ◽  
Philip Avery ◽  
Charbel Farhat ◽  
Jason Rabinovitch ◽  
Armen Derkevorkian ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 73-109
Author(s):  
Zi Siang See ◽  
Lizbeth Goodman ◽  
Craig Hight ◽  
Mohd Shahrizal Sunar ◽  
Arindam Dey ◽  
...  

Abstract This research explores the development of a novel method and apparatus for creating spherical panoramas enhanced with high dynamic range (HDR) for high fidelity Virtual Reality 360 degree (VR360) user experiences. A VR360 interactive panorama presentation using spherical panoramas can provide virtual interactivity and wider viewing coverage; with three degrees of freedom, users can look around in multiple directions within the VR360 experiences, gaining the sense of being in control of their own engagement. This degree of freedom is facilitated by the use of mobile displays or head-mount-devices. However, in terms of image reproduction, the exposure range can be a major difficulty in reproducing a high contrast real-world scene. Imaging variables caused by difficulties and obstacles can occur during the production process of spherical panorama facilitated with HDR. This may result in inaccurate image reproduction for location-based subjects, which will in turn result in a poor VR360 user experience. In this article we describe a HDR spherical panorama reproduction approach (workflow and best practice) which can shorten the production processes, and reduce imaging variables, and technical obstacles and issues to a minimum. This leads to improved photographic image reproduction with fewer visual abnormalities for VR360 experiences, which can be adaptable into a wide range of interactive design applications. We describe the process in detail and also report on a user study that shows the proposed approach creates images which viewers prefer, on the whole, to those created using more complicated HDR methods, or to those created without the use of HDR at all.


Author(s):  
Shinhoon Kim ◽  
Nasser L. Azad ◽  
John McPhee

The development and validation of a high-fidelity dynamics model of an electric vehicle is presented. The developed model is comprised of two subsystems: i) the vehicle dynamics model, and ii) the electrical powertrain subsystem consists of the alternating-current (AC) induction motor, the 3-phase pulse-width-modulation (PWM) inverter, and the motor controllers. At each stage of the development, the developed models are verified by studying their simulation results. Also, vehicle testing is performed using a reference electric vehicle and experimental powertrain data is measured from the vehicle’s electrical powertrain controller area network (CAN) bus. The experimental motor torque-speed curves are used to tune the AC electric motor model parameters. Once the individual components are developed and validated, the high-fidelity electric vehicle system model is created by assembling the MapleSim vehicle dynamics model and the electrical powertrain subsystem. The simulation results, such as the vehicle’s longitudinal speed and developed motor torque and currents, are presented and studied to verify that the electric vehicle system can operate under different driving scenarios. The high-fidelity electric vehicle model will be used in future work to test and validate new power management controllers.


2018 ◽  
Vol 148 ◽  
pp. 03004
Author(s):  
Elżbieta Jarzębowska ◽  
Michał Cieśluk

The paper presents a motorcycle dynamics model developed for testing and future model based controller designs for accelerated maneuvers on variable slip terrains. The dynamics is simplified, yet it captures real motorcycle behaviors when it accelerates and decelerates on a curvy trajectory and contact forces due to variable ground properties change and allow to generate slip. The tire - terrain model is based upon a simplified Pacejka model. The paper objective is not to obtain complex dynamical systems of equations like those required for high-fidelity simulations. Instead, the aim is to derive simple but reliable and manageable models that enable designing and implementing, and verifying control laws, as well as maintaining their capability to capture the main behaviors of real systems. The paper applies the adopted assumptions to develop the motorcycle model, and presents simulation tests for the motorcycle acceleration and deceleration during turn maneuvers, and during changes of the ground the vehicle moves on.


Sign in / Sign up

Export Citation Format

Share Document