Effect of Wing Planform on Airplane Stability and Control Authority in Stall

2022 ◽  
Author(s):  
Moatasem Fouda ◽  
Haitham E. Taha
Author(s):  
Lap Nguyen ◽  
Natalie Ramos Pedroza ◽  
William MacKunis ◽  
Vladimir Golubev

We examine a new robust nonlinear flight control technology that employs an array of synthetic-jet micro-actuators embedded in UAV wing design in order to completely eliminate moving parts (such as ailerons) thus greatly enhancing maneuverability required for small fixed-wing air vehicles operating, e.g., in tight urban environments. Estimated fast response times are critical in mitigating gust effects while greatly improving flight stability and control. The new controller design is particularly advantageous for high levels of uncertainty and nonlinearity present both in the unsteady flow-path environment and in the embedded actuator’s response. The current work focuses on a benchmark case of flutter control of 2-DOF elastically-mounted airfoil entering limit-cycle oscillations (LCO) due to impinging upstream flow disturbance. Preliminary parametric studies conducted for various SJA excitation amplitudes and frequencies examine the thresholds of the actuator’s control authority to produce a desirable impact.


2013 ◽  
Vol 47 (3) ◽  
pp. 81-98 ◽  
Author(s):  
Shuangshuang Fan ◽  
Craig Woolsey

AbstractUnderwater gliders are winged autonomous underwater vehicles (AUVs) that can be deployed for months at a time and travel thousands of kilometers. As with any vehicle, different applications impose different mission requirements that impact vehicle design. We investigate the relationship between a glider’s geometry and its performance and stability characteristics. Because our aim is to identify general trends rather than perform a detailed design optimization, we consider a generic glider shape: a cylindrical hull with trapezoidal wings. Geometric parameters of interest include the fineness ratio of the hull, the wing position and shape, and the position and size of the vertical stabilizer. We describe the results of parametric studies for steady wings-level flight, both at minimum glide angle and at maximum horizontal speed, as well as for steady turning flight. We describe the variation in required lung capacity and maximum lift-to-drag ratio corresponding to a given vehicle size and speed; we also consider range and endurance, given some initial supply of energy for propulsion. We investigate how the turning performance varies with wing and vertical stabilizer configuration. To support this analysis, we consider the glider as an 8-degree-of-freedom multibody system (a rigid body with a cylindrically actuated internal moving mass) and develop approximate expressions for turning flight in terms of geometry and control parameters. Moving from performance to stability and recognizing that a glider’s motion is well described in terms of small perturbations from wings-level equilibrium, we study stability as an eigenvalue problem for a rigid (actuators-fixed) flight vehicle. We present a number of root locus plots in terms of various geometric parameters that illuminate the design tradeoff between stability and control authority.


1997 ◽  
Author(s):  
Zhongjun Wang ◽  
Zhidai He ◽  
C. Lan ◽  
Zhongjun Wang ◽  
Zhidai He ◽  
...  

Author(s):  
Ashraf Omran ◽  
Mohamed Elshabasy ◽  
Wael Mokhtar ◽  
Brett Newman ◽  
Mohamed Gharib

Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


Author(s):  
Dongyu Li ◽  
Haoyong Yu ◽  
Keng Peng Tee ◽  
Yan Wu ◽  
Shuzhi Sam Ge ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3680
Author(s):  
Lasantha Meegahapola ◽  
Siqi Bu

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to the clean and low-carbon renewable energy sources [...]


Sign in / Sign up

Export Citation Format

Share Document