A Parametric G1-continuous Rounded Wing Tip Treatment for Preliminary Aircraft Design

2022 ◽  
Author(s):  
Marshall C. Galbraith ◽  
Robert Haimes
2016 ◽  
Vol 121 (1235) ◽  
pp. 73-94 ◽  
Author(s):  
A. Castrichini ◽  
V. Hodigere Siddaramaiah ◽  
D.E. Calderon ◽  
J.E. Cooper ◽  
T. Wilson ◽  
...  

ABSTRACTA recent consideration in aircraft design is the use of folding wing-tips with the aim of enabling higher aspect ratio aircraft with less induced drag while also meeting airport gate limitations. This study investigates the effect of exploiting folding wing-tips in flight as a device to reduce both static and dynamic loads. A representative civil jet aircraft aeroelastic model was used to explore the effect of introducing a wing-tip device, connected to the wings with an elastic hinge, on the load behaviour. For the dynamic cases, vertical discrete gusts and continuous turbulence were considered. The effects of hinge orientation, stiffness, damping and wing-tip weight on the static and dynamic response were investigated. It was found that significant reductions in both the static and dynamic loads were possible. For the case considered, a 25% increase in span using folding wing-tips resulted in almost no increase in loads.


2019 ◽  
Vol 56 (3) ◽  
pp. 1259-1263 ◽  
Author(s):  
Francesca Tomasella ◽  
Marco Fioriti ◽  
Luca Boggero ◽  
Sabrina Corpino

2011 ◽  
Vol 2 (1-4) ◽  
pp. 57-68 ◽  
Author(s):  
Carsten M. Liersch ◽  
Martin Hepperle

2008 ◽  
Author(s):  
R. Oliveira ◽  
A. Cortellazzi ◽  
P. Nakamura ◽  
R. Neto ◽  
E. Belo ◽  
...  

2006 ◽  
Vol 110 (1107) ◽  
pp. 327-331 ◽  
Author(s):  
U. Herrmann

Abstract A new approach for low-drag high-lift system design based on the application of viscous flow solvers was developed in the EC research project EPISTLE. Two high-lift systems for a supersonic commercial transport aircraft (SCT) wing were designed, manufactured and wind-tunnel tested. The predicted large drag reductions were fully confirmed by tests at high Reynolds numbers. These drag reductions significantly reduce the low-speed noise of future SCT configurations. This was estimated by preliminary aircraft design tools. Low-speed noise reduction by aerodynamic means is obtained, as effective high-lift systems enable these aircraft to climb faster.


2019 ◽  
Vol 91 (3) ◽  
pp. 509-524
Author(s):  
Wojciech Chajec ◽  
Wieslaw A. Krzymien ◽  
Andreas Strohmayer

Purpose The separation of energy conversion and propulsor is a promising aspect of hybrid-electric propulsion systems, allowing for increased installation efficiencies and setting the basis for distributed propulsion concepts. University of Stuttgart’s Institute of Aircraft Design has a long experience with electrically powered aircraft, starting with Icaré 2, a solar-powered glider flying, since 1996. Icaré 2 recently has been converted to a three-engine motor glider with two battery-powered wing-tip propellers, in addition to the solar-powered main electric motor. This adds propulsion redundancy and will allow analyzing yaw control concepts with differential thrust and the propeller-vortex interaction at the wing-tip. To ensure airworthiness for this design modification, new ground vibration tests (GVTs) and flutter calculations are required. The purpose of this paper is to lay out the atypical approach to test execution due to peculiarities of the Icaré 2 design such as an asymmetrical aileron control system, the long wing span with low frequencies of the first mode and elevated wing tips bending under gravity and thus affecting the accuracy of the wing torsion frequency measurements. Design/methodology/approach A flutter analysis based on GVT results is performed for the aircraft in basic configuration and with wing tip propulsors in pusher or tractor configuration. Apart from the measured resonant modes, the aircraft rigid body modes and the control surface mechanism modes are taken into consideration. The flutter calculations are made by a high-speed, low-cost software named JG2 based on the strip theory in aerodynamics and the V-g method of flutter problem solution. Findings With the chosen atypical approach to GVT the impact of the suspension on the test results was shown to be minimal. Flutter analysis has proven that the critical flutter speed of Icaré 2 is sufficiently high in all configurations. Practical implications The atypical approach to GVT and subsequent flutter analysis have shown that the effects of wing-tip propulsors on aeroelasticity of the high aspect ratio configuration do not negatively affect flutter characteristics. This analysis can serve as a basis for an application for a permit to fly. Originality/value The presented methodology is valuable for the flutter assessment of aircraft configurations with atypical aeroelastic characteristics.


Sign in / Sign up

Export Citation Format

Share Document