Time-series Assisted Machine Learning Framework for Probabilistic Rotor Fault Diagnosis on Multicopters under Varying Operating Conditions

2022 ◽  
Author(s):  
Airin Dutta ◽  
Robert Niemiec ◽  
Farhan Gandhi ◽  
Fotis Kopsaftopoulos
2020 ◽  
pp. 1-12
Author(s):  
Linuo Wang

Injuries and hidden dangers in training have a greater impact on athletes ’careers. In particular, the brain function that controls the motor function area has a greater impact on the athlete ’s competitive ability. Based on this, it is necessary to adopt scientific methods to recognize brain functions. In this paper, we study the structure of motor brain-computer and improve it based on traditional methods. Moreover, supported by machine learning and SVM technology, this study uses a DSP filter to convert the preprocessed EEG signal X into a time series, and adjusts the distance between the time series to classify the data. In order to solve the inconsistency of DSP algorithms, a multi-layer joint learning framework based on logistic regression model is proposed, and a brain-machine interface system of sports based on machine learning and SVM is constructed. In addition, this study designed a control experiment to improve the performance of the method proposed by this study. The research results show that the method in this paper has a certain practical effect and can be applied to sports.


2020 ◽  
Vol 30 (6) ◽  
pp. 063116 ◽  
Author(s):  
Yu Huang ◽  
Zuntao Fu ◽  
Christian L. E. Franzke

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sergio Martin del Campo Barraza ◽  
William Lindskog ◽  
Davide Badalotti ◽  
Oskar Liew ◽  
Arash Toyser

Data-based models built using machine learning solutions are becoming more prominent in the condition monitoring, maintenance, and prognostics fields. The capacity to build these models using a machine learning approach depends largely in the quality of the data. Of particular importance is the availability of labelled data, which describes the conditions that are intended to be identified. However, properly labelled data that is useful in many machine learning strategies is a scare resource. Furthermore, producing high-quality labelled data is expensive, time-consuming and a lot of times inaccurate given the uncertainty surrounding the labeling process and the annotators.  Active Learning (AL) has emerged as a semi-supervised approach that enables cost and time reductions of the labeling process. This approach has had a delayed adoption for time series classification given the difficulty to extract and present the time series information in such a way that it is easy to understand for the human annotator who incorporates the labels. This difficulty arises from the large dimensionality that many of these time series possess. This challenge is exacerbated by the cold-start problem, where the initial labelled dataset used in typical AL frameworks may not exist. Thus, the initial set of labels to be allocated to the time series samples is not available. This last challenge is particularly common on many condition monitoring applications where data samples of specific faults or problems does not exist. In this article, we present an AL framework to be used in the classification of time series from industrial process data, in particular vibration waveforms originated from condition monitoring applications. In this framework, we deal with the absence of labels to train an initial classification model by introducing a pre-clustering step. This step uses an unsupervised clustering algorithm to identify the number of labels and selects the points with a stronger group belonging as initial samples to be labelled in the active learning step. Furthermore, this framework presents two approaches to present the information to the annotator that can be via time-series imaging and automatic extraction of statistical features. Our work is motivated by the interest to facilitate the effort required for labeling time-series waveforms, while maintaining a high level of accuracy and consistency on those labels. In addition, we study the number of time-series samples that require to be labelled to achieve different levels of classification accuracy, as well as their confidence intervals. These experiments are carried out using vibration signals from a well-known rolling element bearing dataset and typical process data from a production plant.   An active learning framework that considers the conditions of the data commonly found in maintenance and condition monitoring applications while presenting the data in ways easy to interpret by human annotators can facilitate the generation reliable datasets. These datasets can, in turn, assist in the development of data-driven models that describe the many different processes that a machine undergoes.


2021 ◽  
Author(s):  
Martijn Witjes ◽  
Leandro Parente ◽  
Chris J. van Diemen ◽  
Tomislav Hengl ◽  
Martin Landa ◽  
...  

Abstract A seamless spatiotemporal machine learning framework for automated prediction, uncertainty assessment, and analysis of land use / land cover (LULC) dynamics is presented. The framework includes: (1) harmonization and preprocessing of high-resolution spatial and spatiotemporal covariate datasets (GLAD Landsat, NPP/VIIRS) including 5 million harmonized LUCAS and CORINE Land Cover-derived training samples, (2) model building based on spatial k-fold cross-validation and hyper-parameter optimization, (3) prediction of the most probable class, class probabilities and uncertainty per pixel, (4) LULC change analysis on time-series of produced maps. The spatiotemporal ensemble model was fitted by combining random forest, gradient boosted trees, and artificial neural network, with logistic regressor as meta-learner. The results show that the most important covariates for mapping LULC in Europe are: seasonal aggregates of Landsat green and near-infrared bands, multiple Landsat-derived spectral indices, and elevation. Spatial cross-validation of the model indicates consistent performance across multiple years with 62%, 70%, and 87% accuracy when predicting 33 (level-3), 14 (level-2), and 5 classes (level-1); with artificial surface classes such as 'airports' and 'railroads' showing the lowest match with validation points. The spatiotemporal model outperforms spatial models on known-year classification by 2.7% and unknown-year classification by 3.5%. Results of the accuracy assessment using 48,365 independent test samples shows 87% match with the validation points. Results of time-series analysis (time-series of LULC probabilities and NDVI images) suggest gradual deforestation trends in large parts of Sweden, the Alps, and Scotland. An advantage of using spatiotemporal ML is that the fitted model can be used to predict LULC in years that were not included in its training dataset, allowing generalization to past and future periods, e.g. to predict land cover for years prior to 2000 and beyond 2020. The generated land cover time-series data stack (ODSE-LULC), including the training points, is publicly available via the Open Data Science (ODS)-Europe Viewer.


2021 ◽  
Author(s):  
Martijn Witjes ◽  
Leandro Parente ◽  
Chris J. van Diemen ◽  
Tomislav Hengl ◽  
Martin Landa ◽  
...  

Abstract A seamless spatiotemporal machine learning framework for automated prediction, uncertainty assessment, and analysis of long-term LULC dynamics is presented. The framework includes: (1) harmonization and preprocessing of high-resolution spatial and spatiotemporal input datasets (GLAD Landsat, NPP/VIIRS) including 5~million harmonized LUCAS and CORINE Land Cover-derived training samples, (2) model building based on spatial k-fold cross-validation and hyper-parameter optimization, (3) prediction of the most probable class, class probabilities and uncertainty per pixel, (4) LULC change analysis on time-series of produced maps. The spatiotemporal ensemble model consists of a random forest, gradient boosted tree classifier, and a artificial neural network, with a logistic regressor as meta-learner. The results show that the most important variables for mapping LULC in Europe are: seasonal aggregates of Landsat green and near-infrared bands, multiple Landsat-derived spectral indices, long-term surface water probability, and elevation. Spatial cross-validation of the model indicates consistent performance across multiple years with overall accuracy (weighted F1-score) of 0.49, 0.63, and 0.83 when predicting 44 (level-3), 14 (level-2), and 5 classes (level-1). The spatiotemporal model outperforms spatial models on known-year classification by 2.7% and unknown-year classification by 3.5%. Results of the accuracy assessment using 48,365 independent test samples shows 87% match with the validation points. Results of time-series analysis (time-series of LULC probabilities and NDVI images) suggest forest loss in large parts of Sweden, the Alps, and Scotland. An advantage of using spatiotemporal ML is that the fitted model can be used to predict LULC in years that were not included in its training dataset, allowing generalization to past and future periods, e.g. to predict land cover for years prior to 2000 and beyond 2020. The generated land cover time-series data stack (ODSE-LULC), including the training points, is publicly available via the Open Data Science (ODS)-Europe Viewer. Functions used to prepare data and run modeling are available via the eumap library for python.


Author(s):  
Natalia F. Espinoza Sepúlveda ◽  
Jyoti K. Sinha

Abstract Purpose The development and application of intelligent models to perform vibration-based condition monitoring in industry seems to be receiving attention in recent years. A number of such research studies using the artificial intelligence, machine learning, pattern recognition, etc., are available in the literature on this topic. These studies essentially used the machine vibration responses with known machine faults to develop smart fault diagnosis models. These models are yet to be tested for all kinds of machine faults and/or different operating conditions. Therefore, the purpose is to develop a generic machine faults diagnosis model that can be applied blindly to any identical machines with high confidence level in accuracy of the predictions. Methods In this paper, a supervised smart fault diagnosis model is developed. This model is developed using the available measured vibration responses for the different rotor faults simulated on an experimental rotating rig operating at a constant speed. The developed smart vibration-based machine learning (SVML) model is then blindly tested to identify the healthy and faulty conditions of the rig when operating at different speeds. Results and conclusions Several scenarios are proposed and examined during the development of the SVML model. It is observed that scenario of the vibration measurements simultaneously from all bearings from a machine is capable to fully map the machine dynamics in the VML model. Therefore, this developed when applied blindly to the sets of data at a different machine speed, the results are observed to be encouraging. The results clearly show a possibility for a centralised vibration-based condition monitoring (CVCM) model for identical machines operating at different rotating speeds.


2021 ◽  
Vol 260 ◽  
pp. 03006
Author(s):  
Xiaofeng He ◽  
Xiaofeng Liu ◽  
Xiulian Lu ◽  
Lipeng He ◽  
Yunxiang Ma ◽  
...  

With the development of Industry 4.0, in order to meet the needs of intelligent fault diagnosis of rotating machinery in the industrial field, this paper developed a fault diagnosis system for rotating machinery based on deep learning and wavelet transform methods. The system is based on the Python language and mainly combines the PyQt graphical interface framework and the TensorFlow machine learning framework to complete the training requirements for historical or online fault data, and perform online monitoring and diagnosis of equipment operating conditions. The diagnostic accuracy of the system test results is more than 95%, the software interface is friendly, the algorithm generalization ability is good, and the reliability is strong. It provides guidance for the diagnosis of rotating machinery.


2020 ◽  
Author(s):  
Ilan Figueirêdo ◽  
Lílian Lefol Nani Guarieiro ◽  
Erick Giovani Sperandio Nascimento

The development of artificial intelligence (AI) algorithms for classification purpose of undesirable events has gained notoriety in the industrial world. Nevertheless, for AI algorithm training is necessary to have labeled data to identify the normal and anomalous operating conditions of the system. However, labeled data is scarce or nonexistent, as it requires a herculean effort to the specialists of labeling them. Thus, this chapter provides a comparison performance of six unsupervised Machine Learning (ML) algorithms to pattern recognition in multivariate time series data. The algorithms can identify patterns to assist in semiautomatic way the data annotating process for, subsequentially, leverage the training of AI supervised models. To verify the performance of the unsupervised ML algorithms to detect interest/anomaly pattern in real time series data, six algorithms were applied in following two identical cases (i) meteorological data from a hurricane season and (ii) monitoring data from dynamic machinery for predictive maintenance purposes. The performance evaluation was investigated with seven threshold indicators: accuracy, precision, recall, specificity, F1-Score, AUC-ROC and AUC-PRC. The results suggest that algorithms with multivariate approach can be successfully applied in the detection of anomalies in multivariate time series data.


Sign in / Sign up

Export Citation Format

Share Document