scholarly journals SUMMARY OF CHOSEN LEGISLATION USED IN AUTOMATED OPERATION

Author(s):  
Marek Vagas

Urgency of the research. In the field of automation currently exists a lot of standards and directives deals with this area, and frequent mistakes and errors occur during implementation of automated workplaces (especially with robotic arm). Target setting. Purpose of article is to give an overview and brief summary of chosen legislation that is most used during of implementation of such systems. Actual scientific researches and issues analysis. Several books and articles were published during past of years, but a lot of them contain general and complex information, only few of them were focused on limited area, such automated workplac-es. Uninvestigated parts of general matters defining. Despite to lot of information from this area, still is missed clear idea for automated workplace implementation. The research objective. The point of article is showing the most important legislative for automated workplace designing with safety requirements. The statement of basic materials. For success realization of automated solution (obviously with robotic arm) is needed evaluation and assessment of risk that can occur there, with regards to the persons around workplace. Conclusions. The results published in this article increase the correct installation of such automated workplaces, together with industrial robots. In addition, presented legislative helps persons for better understanding of material flow creation in these types of workplaces, where major role is realized via industrial robot. Our proposed solution can be considered as rele-vant base for introducing such workplaces into the “INDUSTRY 4.0” concept.

Author(s):  
Marek Vagas

Urgency of the research. Automated workplaces are growing up in present, especially with implementation of industrial robots with feasibility of various dispositions, where safety and risk assessment is considered as most important issues. Target setting. The protection of workers must be at the first place, therefore safety and risk assessment at automated workplaces is most important problematic, which had presented in this article Actual scientific researches and issues analysis. Actual research is much more focused at standard workplaces without industrial robots. So, missing of information from the field of automated workplaces in connection with various dispositions can be considered as added value of article. Uninvestigated parts of general matters defining. Despite to lot of general safety instructions in this area, still is missed clear view only at automated workplace with industrial robots. The research objective. The aim of article is to provide general instructions directly from the field of automated workplaces The statement of basic materials. For success realization of automated workplace is good to have a helping hand and orientation requirements needed for risk assessment at the workplace. Conclusions. The results published in this article increase the awareness and information of such automated workplaces, together with industrial robots. In addition, presented general steps and requirements helps persons for better realization of these types of workplaces, where major role takes an industrial robot. Our proposed solution can be considered as relevant base for risk assessment such workplaces with safety fences or light barriers.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Jae-Han Park ◽  
Tae-Woong Yoon

Automated motion-planning technologies for industrial robots are critical for their application to Industry 4.0. Various sampling-based methods have been studied to generate the collision-free motion of articulated industrial robots. Such sampling-based methods provide efficient solutions to complex planning problems, but their limitations hinder the attainment of optimal results. This paper considers a method to obtain the optimal results in the roadmap algorithm that is representative of the sampling-based method. We define the coverage of a graph as a performance index of its optimality as constructed by a sampling-based algorithm and propose an optimization algorithm that can maximize graph coverage in the configuration space. The proposed method was applied to the model of an industrial robot, and the results of the simulation confirm that the roadmap graph obtained by the proposed algorithm can generate results of satisfactory quality in path-finding tests under various conditions.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Guang Jin ◽  
Shuai Ma ◽  
Zhenghui Li

This paper studies the kinematic dynamic simulation modeling of industrial robots in the Industry 4.0 environment and guides the kinematic dynamic simulation modeling of industrial robots in the Industry 4.0 environment in the context of the research. To address the problem that each parameter error has different degrees of influence on the end position error, a method is proposed to calculate the influence weight of each parameter error on the end position error based on the MD-H error model. The error model is established based on the MD-H method and the principle of differential transformation, and then the function of uniform variation of six joint angles with time t is constructed to ensure that each linkage geometric parameter is involved in the motion causing error accumulation. Through the analysis of the robot marking process, the inverse solution is optimized for multiple solutions, and a unique engineering solution is obtained. Linear interpolation, parabolic interpolation, polynomial interpolation, and spline curve interpolation are performed on the results after multisolution optimization in the joint angle, and the pros and cons of various interpolation results are analyzed. The trajectory planning and simulation of industrial robots in the Industry 4.0 environment are carried out by using a special toolbox. The advantages and disadvantages of the two planning methods are compared, and the joint space trajectory planning method is selected to study the planning of its third and fifth polynomials. The kinetic characteristics of the robot were simulated and tested by experimental methods, and the reliability of the simulation results of the kinetic characteristics was verified. The kinematic solutions of industrial robots and the results of multisolution optimization are simulated. The methods, theories, and strategies studied in this paper are slightly modified to provide theoretical and practical support for another dynamic simulation modeling of industrial robot kinematics with various geometries.


Author(s):  
Xianhe Wen ◽  
Heping Chen

Since the concept of industry 4.0 was proposed in 2011, the trend of industry 4.0 has been surging around the world. Intelligent factory is one of the main research points in the industry 4.0 era. In order to improve the intelligent level of the factory, the connection-and-cognition ability has to be established for the factory and its equipment. Connection builds data pipes among equipment and systems while cognition automatically turns the data into knowledge. In an intelligent factory, industrial robot plays a leading role. Hence, the aim of this paper is to synthetically study connection and cognition of industrial robots in intelligent factories. To be specific, open platform communications unified architecture (OPC UA) is applied to establish heterogeneous connection of industrial robots with factory management software. A long short-term memory (LSTM) joint auto encoder method is proposed to establish the unsupervised anomaly detection cognition ability for industrial robot process (e.g. grinding, welding and assembling). In summary, this study puts OPC UA and LSTM auto encoder technology together to study heterogeneous connection and process anomaly detection of industrial robots in intelligent factory. The experimental results showed that the proposed method successfully realized heterogeneous connection of an industrial robot and detected process anomaly from the robot built-in sensors’ data.


Author(s):  
Longfei Sun ◽  
Fengyong Liang ◽  
Lijin Fang

Purpose The purpose of this paper is to present a robotic arm that can offer better stiffness than traditional industrial robots for improving the quality of holes in robotic drilling process. Design/methodology/approach The paper introduces a five-degree of freedom (DOF) robot, which consists of a waist, a big arm, a small arm and a wrist. The robotic wrist is composed of two DOFs of pitching and tilting. A parallelogram frame is used for robotic arms, and the arm is driven by a linear electric cylinder in the diagonal direction. Double screw nuts with preload are used in the ball screw to remove the reverse backlash. In addition, dual-motor drive is applied for each DOF in the waist and the wrist to apply anti-backlash control method for eliminating gear backlash. Findings The proposed robotic arm has the potential for improving robot stiffness because of its truss structure. The robot can offer better stiffness than industrial robots, which is beneficial to improve the quality of robotic drilling holes. Originality/value This paper includes the design of a five-DOF robot for robotic drilling tasks, and the stiffness modeling of the robot is presented and verified by the experiment. The robotic system can be used instead of traditional industrial robots for improving the hole quality to a certain extent.


2014 ◽  
Vol 699 ◽  
pp. 846-852 ◽  
Author(s):  
Mohd Nor Fakhzan Mohd Kazim ◽  
Hairol Nizam Mohd Shah ◽  
Muhammad Dzulhaxif bin Muhammad Nasir

This paper presents a theoretical analysis on energy consumption for industrial robots. In this project, the industrial robot used is a virtual robot resembling the FANUC LR Mate 200iB robotic arm. The first two joints consume the most electrical energy, this research focuses only on the first two joints. The calculation of the electrical energy consumed is based on a previous established research done by Herman (2009) from Universiti Teknikal Malaysia Melaka (UTeM) in the year 2009. In this research, three different time intervals were used to set the speed of the robotic arm to be at 50%, 100% and 200% speed and they were tested on 10 different angles with 10 time intervals for the 1st and the 2nd robotic joints.


Sign in / Sign up

Export Citation Format

Share Document