Theoretical Analysis on Energy Consumption for Industrial Robots

2014 ◽  
Vol 699 ◽  
pp. 846-852 ◽  
Author(s):  
Mohd Nor Fakhzan Mohd Kazim ◽  
Hairol Nizam Mohd Shah ◽  
Muhammad Dzulhaxif bin Muhammad Nasir

This paper presents a theoretical analysis on energy consumption for industrial robots. In this project, the industrial robot used is a virtual robot resembling the FANUC LR Mate 200iB robotic arm. The first two joints consume the most electrical energy, this research focuses only on the first two joints. The calculation of the electrical energy consumed is based on a previous established research done by Herman (2009) from Universiti Teknikal Malaysia Melaka (UTeM) in the year 2009. In this research, three different time intervals were used to set the speed of the robotic arm to be at 50%, 100% and 200% speed and they were tested on 10 different angles with 10 time intervals for the 1st and the 2nd robotic joints.

2015 ◽  
Vol 805 ◽  
pp. 223-230 ◽  
Author(s):  
Paryanto ◽  
Alexander Hetzner ◽  
Matthias Brossog ◽  
Jörg Franke

In this paper, a modular dynamic model of an industrial robot (IR) for predicting and analyzing its energy consumption is developed. The model consists of control systems, which include a state-of-the-art feedback linearization controller, permanent magnet synchronous drives and the mechanical structure with Coulomb friction and linear damping. By using the developed model, a detailed analysis of the influence of different parameter sets on the energy consumption and loss energy of IRs is investigated. The investigation results show that the operating parameters, robot motor drives, and mechanical damping and elasticity of robot transmissions have a significant effect on the energy consumption and accuracy of IRs. However, these parameters are not independent, but rather interrelated. For example, a higher acceleration and velocity shortens IRs’ operating periods, but needs a greater motor current, tends to excite vibrations to a greater extent, and thus produces a higher amount of loss energy.


2020 ◽  
Vol 10 (21) ◽  
pp. 7475
Author(s):  
Ilaria Palomba ◽  
Erich Wehrle ◽  
Giovanni Carabin ◽  
Renato Vidoni

This paper describes a method for reducing the energy consumption of industrial robots and electrically actuated mechanisms performing cyclic tasks. The energy required by the system is reduced by outfitting it with additional devices able to store and recuperate energy, namely, compliant elements coupled in parallel with axles and regenerative motor drives. Starting from the electromechanical model of the modified system moving following a predefined periodic path, the relationship between the electrical energy and the stiffness and preload of the compliant elements is analyzed. The conditions for the compliant elements to be optimal are analytically derived. It is demonstrated that under these conditions the compliant elements are always beneficial for reducing the energy consumption. The effectiveness of the design method is verified by applying it to two test cases: a five-bar mechanism and a SCARA robot. The numerical validations show that the system energy consumption can be reduced up to the 77.8% while performing a high-speed, standard, not-optimized trajectory.


Author(s):  
Marek Vagas

Urgency of the research. In the field of automation currently exists a lot of standards and directives deals with this area, and frequent mistakes and errors occur during implementation of automated workplaces (especially with robotic arm). Target setting. Purpose of article is to give an overview and brief summary of chosen legislation that is most used during of implementation of such systems. Actual scientific researches and issues analysis. Several books and articles were published during past of years, but a lot of them contain general and complex information, only few of them were focused on limited area, such automated workplac-es. Uninvestigated parts of general matters defining. Despite to lot of information from this area, still is missed clear idea for automated workplace implementation. The research objective. The point of article is showing the most important legislative for automated workplace designing with safety requirements. The statement of basic materials. For success realization of automated solution (obviously with robotic arm) is needed evaluation and assessment of risk that can occur there, with regards to the persons around workplace. Conclusions. The results published in this article increase the correct installation of such automated workplaces, together with industrial robots. In addition, presented legislative helps persons for better understanding of material flow creation in these types of workplaces, where major role is realized via industrial robot. Our proposed solution can be considered as rele-vant base for introducing such workplaces into the “INDUSTRY 4.0” concept.


Author(s):  
Dustyn P. Roberts ◽  
Joo H. Kim

Understanding electrical energy consumption in a robotic system leads to the ability to minimize energy consumption for a given task. This is particularly important for mobile robots and redundant manipulators where extended operating times and non-optimized movement patterns lead to increased operating costs. However, current research shows conflicting formulas for predicting energy consumption in robotic joints driven by DC motors, specifically when negative work is involved. A breakdown of energy consumption for DC motors is introduced with respect to different operating states and phases of positive and negative work. Additionally, the energy consumption of a two degree of freedom manipulator is simulated and verified experimentally. The same task — lowering the manipulator from point a to b in a vertical line — is completed in both elbow up and elbow down configurations to illustrate the difference in energy consumption during a task that consists of mostly negative work. Finally, this energy expenditure equation is extended to a multi degree of freedom simulated humanoid robot to demonstrate validity and generality.


Author(s):  
Longfei Sun ◽  
Fengyong Liang ◽  
Lijin Fang

Purpose The purpose of this paper is to present a robotic arm that can offer better stiffness than traditional industrial robots for improving the quality of holes in robotic drilling process. Design/methodology/approach The paper introduces a five-degree of freedom (DOF) robot, which consists of a waist, a big arm, a small arm and a wrist. The robotic wrist is composed of two DOFs of pitching and tilting. A parallelogram frame is used for robotic arms, and the arm is driven by a linear electric cylinder in the diagonal direction. Double screw nuts with preload are used in the ball screw to remove the reverse backlash. In addition, dual-motor drive is applied for each DOF in the waist and the wrist to apply anti-backlash control method for eliminating gear backlash. Findings The proposed robotic arm has the potential for improving robot stiffness because of its truss structure. The robot can offer better stiffness than industrial robots, which is beneficial to improve the quality of robotic drilling holes. Originality/value This paper includes the design of a five-DOF robot for robotic drilling tasks, and the stiffness modeling of the robot is presented and verified by the experiment. The robotic system can be used instead of traditional industrial robots for improving the hole quality to a certain extent.


Author(s):  
Marek Vagas

Urgency of the research. Automated workplaces are growing up in present, especially with implementation of industrial robots with feasibility of various dispositions, where safety and risk assessment is considered as most important issues. Target setting. The protection of workers must be at the first place, therefore safety and risk assessment at automated workplaces is most important problematic, which had presented in this article Actual scientific researches and issues analysis. Actual research is much more focused at standard workplaces without industrial robots. So, missing of information from the field of automated workplaces in connection with various dispositions can be considered as added value of article. Uninvestigated parts of general matters defining. Despite to lot of general safety instructions in this area, still is missed clear view only at automated workplace with industrial robots. The research objective. The aim of article is to provide general instructions directly from the field of automated workplaces The statement of basic materials. For success realization of automated workplace is good to have a helping hand and orientation requirements needed for risk assessment at the workplace. Conclusions. The results published in this article increase the awareness and information of such automated workplaces, together with industrial robots. In addition, presented general steps and requirements helps persons for better realization of these types of workplaces, where major role takes an industrial robot. Our proposed solution can be considered as relevant base for risk assessment such workplaces with safety fences or light barriers.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Chen Zhang ◽  
Zhuo Tang ◽  
Kenli Li ◽  
Jianzhong Yang ◽  
Li Yang

Installing a six-dimensional force/torque sensor on an industrial arm for force feedback is a common robotic force control strategy. However, because of the high price of force/torque sensors and the closedness of an industrial robot control system, this method is not convenient for industrial mass production applications. Various types of data generated by industrial robots during the polishing process can be saved, transmitted, and applied, benefiting from the growth of the industrial internet of things (IIoT). Therefore, we propose a constant force control system that combines an industrial robot control system and industrial robot offline programming software for a polishing robot based on IIoT time series data. The system mainly consists of four parts, which can achieve constant force polishing of industrial robots in mass production. (1) Data collection module. Install a six-dimensional force/torque sensor at a manipulator and collect the robot data (current series data, etc.) and sensor data (force/torque series data). (2) Data analysis module. Establish a relationship model based on variant long short-term memory which we propose between current time series data of the polishing manipulator and data of the force sensor. (3) Data prediction module. A large number of sensorless polishing robots of the same type can utilize that model to predict force time series. (4) Trajectory optimization module. The polishing trajectories can be adjusted according to the prediction sequences. The experiments verified that the relational model we proposed has an accurate prediction, small error, and a manipulator taking advantage of this method has a better polishing effect.


2021 ◽  
pp. 1-15
Author(s):  
Fernanda P. Mota ◽  
Cristiano R. Steffens ◽  
Diana F. Adamatti ◽  
Silvia S. Da C Botelho ◽  
Vagner Rosa

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 226
Author(s):  
Xuyang Zhao ◽  
Cisheng Wu ◽  
Duanyong Liu

Within the context of the large-scale application of industrial robots, methods of analyzing the life-cycle cost (LCC) of industrial robot production have shown considerable developments, but there remains a lack of methods that allow for the examination of robot substitution. Taking inspiration from the symmetry philosophy in manufacturing systems engineering, this article further establishes a comparative LCC analysis model to compare the LCC of the industrial robot production with traditional production at the same time. This model introduces intangible costs (covering idle loss, efficiency loss and defect loss) to supplement the actual costs and comprehensively uses various methods for cost allocation and variable estimation to conduct total cost and the cost efficiency analysis, together with hierarchical decomposition and dynamic comparison. To demonstrate the model, an investigation of a Chinese automobile manufacturer is provided to compare the LCC of welding robot production with that of manual welding production; methods of case analysis and simulation are combined, and a thorough comparison is done with related existing works to show the validity of this framework. In accordance with this study, a simple template is developed to support the decision-making analysis of the application and cost management of industrial robots. In addition, the case analysis and simulations can provide references for enterprises in emerging markets in relation to robot substitution.


2021 ◽  
Vol 11 (3) ◽  
pp. 1287
Author(s):  
Tianyan Chen ◽  
Jinsong Lin ◽  
Deyu Wu ◽  
Haibin Wu

Based on the current situation of high precision and comparatively low APA (absolute positioning accuracy) in industrial robots, a calibration method to enhance the APA of industrial robots is proposed. In view of the "hidden" characteristics of the RBCS (robot base coordinate system) and the FCS (flange coordinate system) in the measurement process, a comparatively general measurement and calibration method of the RBCS and the FCS is proposed, and the source of the robot terminal position error is classified into three aspects: positioning error of industrial RBCS, kinematics parameter error of manipulator, and positioning error of industrial robot end FCS. The robot position error model is established, and the relation equation of the robot end position error and the industrial robot model parameter error is deduced. By solving the equation, the parameter error identification and the supplementary results are obtained, and the method of compensating the error by using the robot joint angle is realized. The Leica laser tracker is used to verify the calibration method on ABB IRB120 industrial robot. The experimental results show that the calibration method can effectively enhance the APA of the robot.


Sign in / Sign up

Export Citation Format

Share Document