scholarly journals Prediction of Phase Equilibria and Volumetric Behavior of Fluids with High Concentration of Hydrogen Sulfide

Author(s):  
S. Stamataki ◽  
K. Magoulas
Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

Spatial analysis of the distribution of particulate matter PM10, PM2.5, PM1.0, and hydrogen sulfide (H2S) gas pollution was performed in the area around a university library building. The reasons for the subject matter were reports related to the perceptible odor characteristic of hydrogen sulfide and a general poor assessment of air quality by employees and students. Due to the area of analysis, it was decided to perform measurements at two heights, 10 m and 20 m above ground level, using measuring equipment attached to a DJI Matrice 600 unmanned aerial vehicle (UAV). The aim of the measurements was air quality assessment and investigate the convergence of the theory of air flow around the building with the spatial distribution of air pollutants. Considerable differences of up to 63% were observed in the concentrations of pollutants measured around the building, especially between opposite sides, depending on the direction of the wind. To explain these differences, the theory of aerodynamics was applied to visualize the probable airflow in the direction of the wind. A strong convergence was observed between the aerodynamic model and the spatial distribution of pollutants. This was evidenced by the high concentrations of dust in the areas of strong turbulence at the edges of the building and on the leeward side. The accumulation of pollutants was also clearly noticeable in these locations. A high concentration of H2S was recorded around the library building on the side of the car park. On the other hand, the air turbulence around the building dispersed the gas pollution, causing the concentration of H2S to drop on the leeward side. It was confirmed that in some analyzed areas the permissible concentration of H2S was exceeded.


2021 ◽  
Author(s):  
Rania Ibrahim ◽  
Abdessamad El Hassni ◽  
Shahram Navaee-Ardeh ◽  
Hubert Cabana

Abstract Hydrogen sulfide (H2S) is one of the main contaminants found in biogas which is one of the end products of the anaerobic biodegradation of proteins and other sulfur-containing compounds in solid waste. The presence of H2S is one of the factors limiting the valorization of biogas. To valorize biogas, H2S and other contaminants must be removed. This study evaluated the performance of a pilot-scale biotrickling filter system on H2S removal from landfill biogas. The biotrickling filter system, which was packed with stainless-steel pall rings and inoculated with an H2S-oxidizing consortium, was designed to process 1 to 10 SCFM of biogas and used to determine the removal efficiency of a high concentration of hydrogen sulfide from landfill biogas. The biofiltration system consisted of two biotrickling filters connected in series. Results indicate that the biofiltration system reduced H2S concentration by 94–97% without reduction of the methane concentration in the outlet biogas. The inlet concentration of hydrogen sulfide, supplied to the two-phase bioreactor, was in the range of 900 to 1500 ppmv. The hydraulic retention times (HRT) of the two biotrickling filters were 3.9 and 0.9 min, respectively. Approximately 50 ppmv of H2S gas was detected in the outlet gas. The maximum elimination capacity of the biotrickling filter system was found to be 272 g H2S.m− 3.h− 1. During the biological process, the performance of biotrickling filter was not affected when the pH of the recirculated liquid decreased to 2–3. The overall performance of the biotrickling filter system was described using a modified Michaelis–Menten equation, and the Ks and Vm values for the biosystem were 34.7 ppmv and 200 mg H2S/L.h− 1, respectively.


2017 ◽  
Vol 62 (6) ◽  
pp. 1910-1918 ◽  
Author(s):  
Yue Hu ◽  
Taras Y. Makogon ◽  
Prasad Karanjkar ◽  
Kun-Hong Lee ◽  
Bo Ram Lee ◽  
...  

1996 ◽  
Vol 199 (6) ◽  
pp. 1343-1352 ◽  
Author(s):  
D Kraus ◽  
J Doeller ◽  
C Powell

The clam Solemya reidi, which survives in sulfide-rich sediments, houses intracellular sulfide-oxidizing bacteria as symbionts in its gills. The gill bacteriocytes also contain a high concentration of cytoplasmic hemoglobin. Although the in situ hemoglobin optical spectrum was not altered in the presence of hydrogen sulfide, hemoglobin deoxygenation was significantly slowed and incomplete when sulfide was present. A sulfide-mediated decrease in oxygen consumption rate, a shift in intracellular pH or the conversion of hemoglobin to an unusual derivative could all slow in situ hemoglobin deoxygenation. However, under low sulfide levels at which deoxygenation is incomplete, oxygen consumption rate was not inhibited, intracellular pH decreased by less than 0.1 units and the only hemoglobin derivatives present were deoxyhemoglobin and oxyhemoglobin. These results and preliminary measurements of the isolated gill hemoglobin dissociation rate constants suggest that sulfide or a rapidly formed oxidation product may directly influence the rate of Solemya reidi gill hemoglobin deoxygenation.


2020 ◽  
Vol 2020 (3) ◽  
pp. 70-81
Author(s):  
M Juraev ◽  
◽  
G Bimurzaev ◽  
B Razykov ◽  
B Khaidarov

The lithological-facies factor is considered with the aim of studying the natural and geological conditions in which hydrogen sulfide waters are formed in gas and oil fields in the artesian basins of the Republic of Uzbekistan. The distribution of hydrogen sulfide waters is closely related to the areas of joint development of halogen rocks and oil and gas complexes. Since the term “paragenesis” refers to the joint finding of minerals or chemical elements genetically related, this map is a map of the paragenesis of hydrogen sulfide waters with evaporites and oil and gas complexes. In the absence of one of the necessary conditions (sulfates or petroleum organics), hydrogen sulfide waters of high concentration are not formed. Hydrogen sulfide waters in the identified anticlinal structures are formed due to the presence of insignificant gas and oil deposits, which are not of industrial importance


2001 ◽  
pp. 705-713 ◽  
Author(s):  
Kenji KIKUCHI ◽  
Takuji OKAYA ◽  
Nobuo TAKEDA ◽  
Masaru SATOUCHI ◽  
Toshihiro NAKAMURA ◽  
...  

2019 ◽  
Vol 484 ◽  
pp. 60-73 ◽  
Author(s):  
Haining Zhao ◽  
Zhengbao Fang ◽  
Hongbin Jing ◽  
Jianqiao Liu

Sign in / Sign up

Export Citation Format

Share Document