scholarly journals Low-cost experimental application of real-time kinematic positioning for increasing the benefits in cereal crops

Author(s):  
Abdelhamid Tayebi ◽  
◽  
Josefa G髆ez ◽  
Mari醤 Fern醤dez ◽  
Francisco S醗z de Adana ◽  
...  
2019 ◽  
Vol 63 (9) ◽  
pp. 3029-3042 ◽  
Author(s):  
Yun Zhang ◽  
Wenhao Yu ◽  
Yanling Han ◽  
Zhonghua Hong ◽  
Siming Shen ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 823
Author(s):  
Lin Zhao ◽  
Jiachang Jiang ◽  
Liang Li ◽  
Chun Jia ◽  
Jianhua Cheng

Since the traditional real-time kinematic positioning method is limited by the reduced satellite visibility from the deprived navigational environments, we, therefore, propose an improved RTK method with multiple rover receivers sharing a common clock. The proposed method can enhance observational redundancy by blending the observations from each rover receiver together so that the model strength will be improved. Integer ambiguity resolution of the proposed method is challenged in the presence of several inter-receiver biases (IRB). The IRB including inter-receiver code bias (IRCB) and inter-receiver phase bias (IRPB) is calibrated by the pre-estimation method because of their temporal stability. Multiple BeiDou Navigation Satellite System (BDS) dual-frequency datasets are collected to test the proposed method. The experimental results have shown that the IRCB and IRPB under the common clock mode are sufficiently stable for the ambiguity resolution. Compared with the traditional method, the ambiguity resolution success rate and positioning accuracy of the proposed method can be improved by 19.5% and 46.4% in the restricted satellite visibility environments.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 153
Author(s):  
Daiki Sakai ◽  
Naosuke Uchida ◽  
Shinnosuke Enomoto ◽  
Souya Iwata ◽  
Yasuo Kawakami ◽  
...  

In road bicycle races, advanced skills are needed to traverse downhill corners quickly and safely. A previous study revealed that in specific experimental corners, some beginners tend to lean their bikes more compared to experts. Therefore, in seeking to develop a support method for improving rider skill in controlling bike position, the authors aimed to design a system that indicates to users the positions of their bikes to lean it at the appropriate inclination when making turns. First, we determined the corner starting points using the RTK (Real Time Kinematic) positioning system. Then, we calculated the theoretical inclination and compared this to the inclination practiced by an expert. The experiment with this system showed that the expert started leaning the bike approximately 5 m short of a corner’s starting point with the speed maintained at approximately 25 km/h, with some correlation found between the theoretically ideal degree of inclination and the expert’s actual inclination.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 924 ◽  
Author(s):  
Pietro Catania ◽  
Antonio Comparetti ◽  
Pierluigi Febo ◽  
Giuseppe Morello ◽  
Santo Orlando ◽  
...  

Global Navigation Satellite Systems (GNSS) allow the determination of the 3D position of a point on the Earth’s surface by measuring the distance from the receiver antenna to the orbital position of at least four satellites. Selecting and buying a GNSS receiver, depending on farm needs, is the first step for implementing precision agriculture. The aim of this work is to compare the positioning accuracy of four GNSS receivers, different for technical features and working modes: L1/L2 frequency survey-grade Real-Time Kinematic (RTK)-capable Stonex S7-G (S7); L1 frequency RTK-capable Stonex S5 (S5); L1 frequency Thales MobileMapper Pro (TMMP); low-cost L1 frequency Quanum GPS Logger V2 (QLV2). In order to evaluate the positioning accuracy of these receivers, i.e., the distance of the determined points from a reference trajectory, different tests, distinguished by the use or not of Real-Time Kinematic (RTK) differential correction data and/or an external antenna, were carried out. The results show that all satellite receivers tested carried out with the external antenna had an improvement in positioning accuracy. The Thales MobileMapper Pro satellite receiver showed the worst positioning accuracy. The low-cost Quanum GPS Logger V2 receiver surprisingly showed an average positioning error of only 0.550 m. The positioning accuracy of the above-mentioned receiver was slightly worse than that obtained using Stonex S7-G without the external antenna and differential correction (maximum positioning error 0.749 m). However, this accuracy was even better than that recorded using Stonex S5 without differential correction, both with and without the external antenna (average positioning error of 0.962 m and 1.368 m).


Sign in / Sign up

Export Citation Format

Share Document