scholarly journals A Low-Cost, Mobile Real-Time Kinematic Geolocation Service for Engineering and Research Applications

HardwareX ◽  
2021 ◽  
pp. e00203
Author(s):  
André Broekman ◽  
Petrus Johannes Gräbe
Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 924 ◽  
Author(s):  
Pietro Catania ◽  
Antonio Comparetti ◽  
Pierluigi Febo ◽  
Giuseppe Morello ◽  
Santo Orlando ◽  
...  

Global Navigation Satellite Systems (GNSS) allow the determination of the 3D position of a point on the Earth’s surface by measuring the distance from the receiver antenna to the orbital position of at least four satellites. Selecting and buying a GNSS receiver, depending on farm needs, is the first step for implementing precision agriculture. The aim of this work is to compare the positioning accuracy of four GNSS receivers, different for technical features and working modes: L1/L2 frequency survey-grade Real-Time Kinematic (RTK)-capable Stonex S7-G (S7); L1 frequency RTK-capable Stonex S5 (S5); L1 frequency Thales MobileMapper Pro (TMMP); low-cost L1 frequency Quanum GPS Logger V2 (QLV2). In order to evaluate the positioning accuracy of these receivers, i.e., the distance of the determined points from a reference trajectory, different tests, distinguished by the use or not of Real-Time Kinematic (RTK) differential correction data and/or an external antenna, were carried out. The results show that all satellite receivers tested carried out with the external antenna had an improvement in positioning accuracy. The Thales MobileMapper Pro satellite receiver showed the worst positioning accuracy. The low-cost Quanum GPS Logger V2 receiver surprisingly showed an average positioning error of only 0.550 m. The positioning accuracy of the above-mentioned receiver was slightly worse than that obtained using Stonex S7-G without the external antenna and differential correction (maximum positioning error 0.749 m). However, this accuracy was even better than that recorded using Stonex S5 without differential correction, both with and without the external antenna (average positioning error of 0.962 m and 1.368 m).


Author(s):  
Abdelhamid Tayebi ◽  
◽  
Josefa G髆ez ◽  
Mari醤 Fern醤dez ◽  
Francisco S醗z de Adana ◽  
...  

Author(s):  
Hemant Kumar Gianey ◽  
Mumtaz Ali ◽  
V. Vijayakumar ◽  
Ashutosh Sharma ◽  
Rajiv Kumar

Accuracy and total design and implementation cost of the GPS framework determine the viability of GPS based projects. As the greater part of the advanced framework including telemetry, IoT, Cloud, and AUTOSAR frameworks use GPS to get exact outcomes, finding a software-controlled error correction becomes important. With the execution of open source library such as RTKLIB will help in controlling and revising GPS blunders. The project utilizes the RTKLIB along with two stations for better accuracy. The RTK-GPS framework works under Linux environment, which is embedded in the Beagleboard. The communication between the GPS system is set up utilizing both serial communication protocol and TCP/IP suite. To get high precision inside the network, two GPS modules are utilized. One of them will be mounted on the rover and another GPS is the base station of the setup. Both the GPS will have a double radio wire setup to increase the reception level to reduce the noise and get centimeter-level precision. For long-range communication, Rover utilizes Wi-Fi with TCP/IP stack protocol. In this research paper, setup is intended to accomplish the centimeter level precision through libraries in a Linux environment. The design will be set up and tried on a college campus under various conditions with different error parameters to acquire a low cost and centimeter level GPS accuracy.


2019 ◽  
Vol 63 (9) ◽  
pp. 3029-3042 ◽  
Author(s):  
Yun Zhang ◽  
Wenhao Yu ◽  
Yanling Han ◽  
Zhonghua Hong ◽  
Siming Shen ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
pp. 435
Author(s):  
Shulin Zeng ◽  
Cuilin Kuang ◽  
Wenkun Yu

Modern low-cost electronic devices can achieve high precision for global navigation satellite systems (GNSSs) and related applications. Recently, the pseudo-range and carrier phase have been directly obtained from a smartphone to establish a professional-level surveying device. Although promising results have been obtained by linking to an external GNSS antenna, the real-time kinematic (RTK) positioning performance requires further improvement when using the embedded smartphone antenna. We first investigate the observation quality characteristics of the Xiaomi Mi 8 smartphone. The carrier-to-noise-density ratio of L5/E5a signals is below that of L1/E1 signals, and the cycle slip and loss of lock are severe, especially for L5/E5a signals. Therefore, we use an improved stochastic model and ambiguity-resolution strategies to improve the short-baseline RTK positioning accuracy. Experimental results show that the ambiguity fixing rate can reach approximately 90% in 3 h of observations when using the embedded antenna, while the GPS/Galileo/BDS single-frequency combination is more suitable for smartphones. On the other hand, convergence takes 10–30 min, and the RTK positioning accuracy can reach 1 and 2 cm along the horizontal and vertical directions, respectively, if ambiguity is resolved correctly. Moreover, we verify the feasibility of using a mass-produced smartphone for deformation monitoring. Results from a simulated dynamic deformation experiment indicate that a smartphone can recognise deformations as small as 2 cm.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3882
Author(s):  
Nicola Angelo Famiglietti ◽  
Gianpaolo Cecere ◽  
Carmine Grasso ◽  
Antonino Memmolo ◽  
Annamaria Vicari

This paper investigated the achievable accuracy from a low-cost RTK (Real Time Kinematic)/PPK (Post Processing Kinematic) GNSS (Global Navigation Satellite Systems) system installed on board a UAV (Unmanned Aerial Vehicle), employing three different types of GNSS Bases (Alloy, RS2 and RING) working in PPK mode. To evaluate the quality of the results, a set of seven GCPs (Ground Control Points) measured by means of the NRTK (Network Real Time Kinematic) technique was used. The outcomes show a RMSE (Root Mean Square Error) of 0.0189 m for an ALLOY Base, 0.0194 m for an RS2 Base and 0.0511 m for RING Base, respectively, on the vertical value of DEMs (Digital Elevation Models) obtained by a photogrammetric process. This indicates that, when changing the Base for the PPK, the solutions are different, but they can still be considered adequate for precision positioning with UAVs, especially when GCPs could be used with some difficulty. Therefore, the integration of a RTK/PPK GNSS module on a UAV allows the reconstruction of a highly detailed and precise DEM without using GCPs and provides the possibility to carry out surveys in inaccessible areas.


Author(s):  
Elemer Emauel ȘUBA ◽  
Jutka DEAK ◽  
Iulia COROIAN ◽  
Mircea Emil NAP ◽  
Silvia CHIOREAN ◽  
...  

The cadastre and the land book form a unitary and mandatory system that ensures technical, economic and legal records of all the properties on the territory of the country. This paper includes the presentation of the operations necessary to prepare the cadastral documentation for detachment in two lots, using UAV photogrammetric technology. The studied area is located in the suburbs of Valea Ierii locality, with an area of 212353 sqm. The main part of the project was based on the use of the UAV photogrammetric method to survey the area. At the same time, two GNSS receivers were used to complete the photogrammetric measurements. Control and verification points were premarked on the ground, the coordinates of which were determined by the real-time kinematic GNSS method. This operation was followed by performing the photogrammetric flight using an UAS platform. The flight lasted about 17 minutes, covered an area of 29 ha and 288 frames were captured. The front overlap between  photos was set to 75% and the side overlap to 65%. New technologies for taking frames and processing them have been adopted, through methods that involve a low cost and a shorter time to perform specific operations.


Author(s):  
Gabriel de Almeida Souza ◽  
Larissa Barbosa ◽  
Glênio Ramalho ◽  
Alexandre Zuquete Guarato

Sign in / Sign up

Export Citation Format

Share Document