scholarly journals INFLUENCE OF AREA DIMENSIONS WITH ABSORBING BOUNDARY CONDITIONS ON THE RESULTS OF NUMERICAL MODELING OF HF ANTENNA DIRECTIVITY DIAGRAM OF HF

2019 ◽  
Vol 7 (2) ◽  
pp. 232-237
Author(s):  
S. V. Krivaltsevich ◽  
◽  
A. S. Yashchenko ◽  
K. A. Maynenger ◽  
O. I. Kudrin ◽  
...  
Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 963-966 ◽  
Author(s):  
Jianlin Zhu

In numerical modeling of wave motions, strong reflections from artificial model boundaries may contaminate or mask true reflections from the interior model interfaces. Hence, developing a kind of exterior model boundary transparent to the outgoing waves is of critical importance. Among proposed solutions, e.g., Smith (1974), Kausel and Tassoulas (1981), and Higdon (1991), the most widely used may be the Clayton and Engquist (1977) method of absorbing boundary conditions, based on paraxial approximations for acoustic and elastic‐wave equations. However, absorbing boundary conditions make the reflection coefficients zero only for normal incidence, and suppression of reflected S-waves (Clayton and Engquist, 1977) becomes poorer as the ratio of P- to S-wave velocity ([Formula: see text]) becomes larger.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 912-918
Author(s):  
M. E. Hayder ◽  
Fang Q. Hu ◽  
M. Y. Hussaini

2020 ◽  
Vol 66 (4) ◽  
pp. 773-793 ◽  
Author(s):  
Arman Shojaei ◽  
Alexander Hermann ◽  
Pablo Seleson ◽  
Christian J. Cyron

Abstract Diffusion-type problems in (nearly) unbounded domains play important roles in various fields of fluid dynamics, biology, and materials science. The aim of this paper is to construct accurate absorbing boundary conditions (ABCs) suitable for classical (local) as well as nonlocal peridynamic (PD) diffusion models. The main focus of the present study is on the PD diffusion formulation. The majority of the PD diffusion models proposed so far are applied to bounded domains only. In this study, we propose an effective way to handle unbounded domains both with PD and classical diffusion models. For the former, we employ a meshfree discretization, whereas for the latter the finite element method (FEM) is employed. The proposed ABCs are time-dependent and Dirichlet-type, making the approach easy to implement in the available models. The performance of the approach, in terms of accuracy and stability, is illustrated by numerical examples in 1D, 2D, and 3D.


1992 ◽  
Vol 40 (11) ◽  
pp. 2095-2099 ◽  
Author(s):  
J.A. Morente ◽  
J.A. Porti ◽  
M. Khalladi

Sign in / Sign up

Export Citation Format

Share Document