scholarly journals Library of high-performance algorithms for processing of data from unmanned aerial vehicle vision system

2016 ◽  
Vol 7 (2) ◽  
pp. 61-71
Author(s):  
Alexey Agronik ◽  
◽  
Vitaly Fralenko ◽  
2007 ◽  
Vol 19 (2) ◽  
pp. 166-173 ◽  
Author(s):  
Hiroshi Kawano ◽  

A blimp-type unmanned aerial vehicle (BUAV) maintains its longitudinal motion using buoyancy provided by the air around it. This means the density of a BUAV equals that of the surrounding air. Because of this, the motion of a BUAV is seriously affected by flow disturbances, whose distribution is usually non-uniform and unknown. In addition, the inertia in the heading motion is very large. There is also a strict limitation on the weight of equipment in a BUAV, so most BUAVs are so-called under-actuated robots. From this situation, it can be said that the motion planning of the BUAV considering the stochastic property of the disturbance is needed for obstacle avoidance. In this paper, we propose an approach to the motion planning of a BUAV via the application of Markov decision process (MDP). The proposed approach consists of a method to prepare a discrete MDP model of the BUAV motion and a method to maintain the effect of the unknown wind on the BUAV’s motion. A dynamical simulation of a BUAV in an environment with wind disturbance shows high performance of the proposed method.


Author(s):  
Lars Lindner ◽  
Oleg Sergiyenko ◽  
Moises Rivas-López ◽  
Daniel Hernández-Balbuena ◽  
Wendy Flores-Fuentes ◽  
...  

Purpose The purpose of this paper is to present a novel application for a newly developed Technical Vision System (TVS), which uses a laser scanner and dynamic triangulation, to determine the vitality of agriculture vegetation. This vision system, installed on an unmanned aerial vehicle, shall measure the reflected laser energy and thereby determine the normalized differenced vegetation index. Design/methodology/approach The newly developed TVS shall be installed on the front part of the unmanned aerial vehicle, to perform line-by-line scan in the vision system field-of-view. The TVS uses high-quality DC motors, instead of previously researched low-quality DC motors, to eliminate the existence of two mutually exclusive conditions, for exact positioning of a DC motor shaft. The use of high-quality DC motors reduces the positioning error after control. Findings Present paper emphasizes the exact laser beam positioning in the field-of-view of a TVS. By use of high-quality instead of low-quality DC motors, a significant reduced positioning time was achieved, maintaining the relative angular position error less than 1 per cent. Best results were achieved, by realizing a quasi-continuous control, using a high pulse-width modulated duty cycle resolution and a high execution frequency of the positioning algorithm. Originality/value The originality of present paper is represented by the novel application of the newly developed TVS in the field of agriculture. The vitality of vegetation shall be determined by measuring the reflected laser energy of a scanned agriculture zone. The paper’s main focus is on the exact laser beam positioning within the TVS field-of-view, using high-quality DC motors in closed-loop position control configuration.


2005 ◽  
Author(s):  
Gloria L. Calhoun ◽  
Mark H. Draper ◽  
Michael F. Abernathy ◽  
Michael Patzek ◽  
Francisco Delgado

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 795
Author(s):  
Happiness Ugochi Dike ◽  
Yimin Zhou

Multiple object tracking (MOT) from unmanned aerial vehicle (UAV) videos has faced several challenges such as motion capture and appearance, clustering, object variation, high altitudes, and abrupt motion. Consequently, the volume of objects captured by the UAV is usually quite small, and the target object appearance information is not always reliable. To solve these issues, a new technique is presented to track objects based on a deep learning technique that attains state-of-the-art performance on standard datasets, such as Stanford Drone and Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking (UAVDT) datasets. The proposed faster RCNN (region-based convolutional neural network) framework was enhanced by integrating a series of activities, including the proper calibration of key parameters, multi-scale training, hard negative mining, and feature collection to improve the region-based CNN baseline. Furthermore, a deep quadruplet network (DQN) was applied to track the movement of the captured objects from the crowded environment, and it was modelled to utilize new quadruplet loss function in order to study the feature space. A deep 6 Rectified linear units (ReLU) convolution was used in the faster RCNN to mine spatial–spectral features. The experimental results on the standard datasets demonstrated a high performance accuracy. Thus, the proposed method can be used to detect multiple objects and track their trajectories with a high accuracy.


Sign in / Sign up

Export Citation Format

Share Document