Investigation of Multi-Scale Approach for Damage Control in Ultra-Deep Tight Sandstone Gas Reservoirs Based on the Multi-Scale Formation Damage Mechanisms

Author(s):  
Dujie Zhang ◽  
Yili Kang ◽  
Lijun You ◽  
Xiangchen Li ◽  
Jiaxue Li ◽  
...  
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Peng Xu ◽  
Mingbiao Xu

Oil-based drilling fluids (OBDFs) have a strong wellbore stabilization effect, but little attention has been paid to the formation damage caused by oil-based drilling fluids based on traditional knowledge, which is a problem that must be solved prior to the application of oil-based drilling fluid. For ultradeep fractured tight sandstone gas reservoirs, the reservoir damage caused by oil-based drilling fluids is worthy of additional research. In this paper, the potential damage factors of oil-based drilling fluids and fractured tight sandstone formations are analyzed theoretically and experimentally. The damage mechanism of oil-based drilling fluids for fractured tight sandstone gas reservoirs is analyzed based on the characteristics of multiphase fluids in seepage channels, the physical and chemical changes of rocks, and the rheological stability of oil-based drilling fluids. Based on the damage mechanism of oil-based drilling fluids, the key problems that must be solved during the damage control of oil-based drilling fluids are analyzed, a detailed description of formation damage characteristics is made, and how to accurately and rapidly form plugging zones is addressed. This research on damage control can provide a reference for solving the damage problems caused by oil-based drilling fluids in fractured tight sandstone gas reservoirs.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Dujie Zhang ◽  
Yili Kang ◽  
Lijun You ◽  
Jiaxue Li

Ultradeep fractured tight sandstone gas reservoir is easy to suffer from severe formation damage during the drill-in process, yet few papers have been published on the corresponding formation damage mechanisms. This paper focuses on a typical ultradeep fractured tight sandstone reservoir in the Tarim Basin, China. Fluid sensitivity damage, phase trapping damage, and the formation damage induced by oil-based drill-in fluids were evaluated by a serious of modified experimental methods. As a supplement, the rock physics and surface property were analyzed deeply. Results showed that severe fluid sensitivity damage occurred with a decrease in fluid salinity (critical value: 3/4 formation water salinity (FWS)) and an increase in fluid pH value (critical value: pH = 7.5). The change in water film thickness, the enhancement of hydrophilia, particle detachment, and dissolution of quartz/albite under high formation temperature are the main damage mechanisms. Abnormal low water saturation, mixed wettability, abundant clay minerals, and complex pore structures are contributing to the severe phase trapping damage. The dynamic damage rate of oil-based drill-in fluids is 60.01%, and inadequate loading capacity is the main trigger of lost circulation. Finally, a formation damage control strategy was proposed, and a field test proved its feasibility.


2008 ◽  
Author(s):  
Brigitte Bazin ◽  
Samir Bekri ◽  
Olga Vizika ◽  
Benjamin Herzhaft ◽  
Eric Aubry

SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Yijun Wang ◽  
Yili Kang ◽  
Lijun You ◽  
Chengyuan Xu ◽  
Xiaopeng Yan ◽  
...  

Summary Severe formation damage often occurs during the drilling process, which significantly impedes the timely discovery, accurate evaluation, and efficient development of deep tight clastic gas reservoirs. The addition of formation protection additives into drilling fluid after diagnosing the damage mechanism is the most popular technique for formation damage control (FDC). However, the implementation of traditional FDC measures does not consider the multiscale damage characteristics of the reservoir. The present study aims at filling this gap by providing a complete and systematic damage control methodology based on multiscale FDC theory. First, the characteristics of multiscale seepage channels were described through petrology, petrophysics, and well-history data. Subsequently, based on laboratory formation damage evaluation experiments, the formation damage mechanism of each seepage scale was determined. Finally, based on the multiscale formation damage mechanism, a systematic multiscale FDC technology was proposed. Through the use of optimized drilling fluid based on multiscale FDC theory, high-permeability recovery ratio (PRR), high-pressure bearing capacity of plugging zone, and low cumulative filtration loss were observed by laboratory validation experiments. Shorter drilling cycle, less drill-in-fluid loss, lower skin factor, and higher production rates were obtained by using the optimized FDC drilling fluid in field application. This multiscale FDC theory shows excellent results in minimizing formation damage, maintaining original production capacity, and effectively developing gas reservoirs with multiscale pore structure characteristics.


SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 969-976 ◽  
Author(s):  
Brigitte Bazin ◽  
Samir Bekri ◽  
Olga Vizika ◽  
Benjamin Herzhaft ◽  
Eric Aubry

Sign in / Sign up

Export Citation Format

Share Document