scholarly journals Finite Element Simulation of Railway Through Concrete-filled Steel Tube Tied Arch Bridge Based on Static Analysis

2011 ◽  
Vol 243-249 ◽  
pp. 1988-1994 ◽  
Author(s):  
Zi Lin Li ◽  
Pei Yuan Zhou

Based on the finite element theory, the computational model, one through concrete filled steel tube tied-arch bridge was established under the considerations of both geometrical non-linearity and material non-linearity. And using the ANSYS software to study the bridge's arch rib construction process and the overall stability after the complete construction, the results show that the full-bridge’s stability coefficient are larger than other concrete-filled steel tube arch bridge; the in-plane stiffness is larger than the out-plane stiffness, and the influence of material non-linearity on the stability is notable. The results provide a good reference for the similar bridge's design and construction.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012064
Author(s):  
Zhanyi Zhang ◽  
Peiheng Long

Abstract In order to understand the stress of small through tied arch bridge. In this paper, the finite element simulation analysis of Lu Shanqu bridge is carried out in the completion stage by using MADIS / civil software, and the tie bars, arch ribs and suspenders of the superstructure are monitored. The results show that the axial force of the arch rib of this bridge is reduced by the balance of the tie rod, and the bending moment of the tie rod is greatly reduced by the action of the suspender. The stress characteristics of the bridge type are internal statically indeterminate and external statically indeterminate structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhen Liu ◽  
Shibo Zhang

Seismic analysis of concrete-filled steel tube (CFST) arch bridge based on finite element method is a time-consuming work. Especially when uncertainty of material and structural parameters are involved, the computational requirements may exceed the computational power of high performance computers. In this paper, a seismic analysis method of CFST arch bridge based on artificial neural network is presented. The ANN is trained by these seismic damage and corresponding sample parameters based on finite element analysis. In order to obtain more efficient training samples, a uniform design method is used to select sample parameters. By comparing the damage probabilities under different seismic intensities, it is found that the damage probabilities of the neural network method and the finite element method are basically the same. The method based on ANN can save a lot of computing time.


2018 ◽  
Vol 8 (4) ◽  
pp. 650 ◽  
Author(s):  
Hongye Gou ◽  
Wen Zhou ◽  
Changwei Yang ◽  
Yi Bao ◽  
Qianhui Pu

2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Kexin Zhang

Steel tied arch bridge has been widely used in modern bridge construction due to its beautiful shape, high material utilization rate and overall structural stiffness. However, there are few cases in which the tied-arch bridge is constructed by incremental launching . Based on the steel tied arch bridge project, this paper uses finite element software to establish the finite element simulation analysis of the construction process, and monitors the construction process of the bridge. The test results show that it is in the most unfavorable state when the cantilever at the end of the bridge reaches the maximum. At this time, the stress at the 117 m position of the beam reaches the maximum, the stress at the top edge is 33.7 MPa, and the stress at the bottom edge is -58.2 MPa. The stress in other sections did not exceed 30 MPa, and the beam was under uniform stress. When the foot of the internal arch passes through the temporary pier, the supporting force of the pier is maximum, which is about 6000 kN. The reasonable range of α is between 0.55 and 0.65, which is the ratio between the length Ln of launching nose and the maximum span L of incremental launching .


2013 ◽  
Vol 724-725 ◽  
pp. 1709-1713 ◽  
Author(s):  
Xing Han ◽  
Bing Zhu ◽  
Gui Man Liu ◽  
Jun Ping Wang ◽  
Bao Shan Xiang

Taking a concrete-filled steel tube arch bridge with a span of 80m for example, the paper studies the stability of this bridge by using the general finite element program. The analysis introduces the method to deal with the stability of these bridges by FEM, also demonstrates the result of the eigenvalue analysis and dual nonlinear analysis according to an example. In eigenvalue analysis, the influence of the brace and the X-brace to this arch bridge`s stability are compared under different load cases; in dual nonlinear analysis, the load-displacement curves of three different load cases of the rib failure are given. All of these are some valuable to the stability of the concrete-filled steel tube arch bridge.


Sign in / Sign up

Export Citation Format

Share Document