scholarly journals Nutrient solution culture of leaf lettuce under artificial light. II. Growth promotion induced by continuous illumination with low light intensity.

1989 ◽  
Vol 27 (3) ◽  
pp. 75-82 ◽  
Author(s):  
Masayuki ODA ◽  
Satoshi AOKI ◽  
Masaaki NAGAOKA ◽  
Kenkoh TSUJI
1970 ◽  
Vol 62 (3) ◽  
pp. 351-352 ◽  
Author(s):  
N. Jerry Chatterton ◽  
C. M. McKell ◽  
F. T. Bingham ◽  
W. J. Clawson

Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Zhong-sheng He ◽  
Rong Tang ◽  
Meng-jia Li ◽  
Meng-ran Jin ◽  
Cong Xin ◽  
...  

Light is a major environmental factor limiting the growth and survival of plants. The heterogeneity of the light environment after gap formation in forest influences the leaf chlorophyll contents, net photosynthetic rate (Pn), and chlorophyll fluorescence, thus influencing the growth and regeneration of Castanopsis kawakamii seedlings. The aim of this study was to explore the effects of weak light on the photosynthetic physiology of C. kawakamii seedlings in forest gaps and non-gaps. The results showed that (1) the contents of chlorophyll a (Chl-a), chlorophyll b (Chl-b), and total chlorophyll (Chl-T) in forest gaps were lower than in non-gaps. Seedlings tended to increase chlorophyll content to absorb light energy to adapt to low light intensity in non-gap environments. (2) The Pn values of C. kawakamii seedlings in forest gaps were significantly higher than in non-gaps, and forest gaps could improve the seedlings’ photosynthetic capacity. (3) The C. kawakamii seedlings in forest gaps were more sensitive to weak light and control group treatment, especially the tall seedlings, indicating that seedlings require more light to satisfy their growth needs in the winter. The seedlings in non-gaps demonstrated better adaptability to low light intensity. The light intensity was not adequate in weak light conditions and limited seedling growth. We suggest that partial forest selection cutting could improve light intensity in non-gaps, thus promoting seedling growth and regeneration of C. kawakamii more effectively in this forest.


1983 ◽  
Vol 51 (4) ◽  
pp. 421-426 ◽  
Author(s):  
Yasuyoshi HAYATA ◽  
Yutaka SHINOHARA ◽  
Yoshio SUZUKI

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaomin Xue ◽  
Ying Duan ◽  
Jinzheng Wang ◽  
Fengwang Ma ◽  
Pengmin Li

Light and low temperatures induce anthocyanin accumulation, but intense sunlight causes photooxidative sunburn. Nonetheless, there have been few studies of anthocyanin synthesis under different sunlight intensities and low nighttime temperatures. Here, low nighttime temperatures followed by low light intensity were associated with greater anthocyanin accumulation and the expression of anthocyanin biosynthesis genes in “Fuji” apple peel. UDP-glucose flavonoid-3-O-glucosyltransferase (UFGT) activity was positively associated with anthocyanin enrichment. Ascorbic acid can be used as an electron donor of APX to scavenge H2O2 in plants, which makes it play an important role in oxidative defense. Exogenous ascorbate altered the anthocyanin accumulation and reduced the occurrence of high light–induced photooxidative sunburn by removing hydrogen peroxide from the peel. Overall, low light intensity was beneficial for the accumulation of anthocyanin and did not cause photooxidative sunburn, whereas natural light had the opposite effect on the apple peel at low nighttime temperatures. This study provides an insight into the mechanisms by which low temperatures induce apple coloration and high light intensity causes photooxidative sunburn.


Sign in / Sign up

Export Citation Format

Share Document