scholarly journals Nighttime Temperatures and Sunlight Intensities Interact to Influence Anthocyanin Biosynthesis and Photooxidative Sunburn in “Fuji” Apple

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaomin Xue ◽  
Ying Duan ◽  
Jinzheng Wang ◽  
Fengwang Ma ◽  
Pengmin Li

Light and low temperatures induce anthocyanin accumulation, but intense sunlight causes photooxidative sunburn. Nonetheless, there have been few studies of anthocyanin synthesis under different sunlight intensities and low nighttime temperatures. Here, low nighttime temperatures followed by low light intensity were associated with greater anthocyanin accumulation and the expression of anthocyanin biosynthesis genes in “Fuji” apple peel. UDP-glucose flavonoid-3-O-glucosyltransferase (UFGT) activity was positively associated with anthocyanin enrichment. Ascorbic acid can be used as an electron donor of APX to scavenge H2O2 in plants, which makes it play an important role in oxidative defense. Exogenous ascorbate altered the anthocyanin accumulation and reduced the occurrence of high light–induced photooxidative sunburn by removing hydrogen peroxide from the peel. Overall, low light intensity was beneficial for the accumulation of anthocyanin and did not cause photooxidative sunburn, whereas natural light had the opposite effect on the apple peel at low nighttime temperatures. This study provides an insight into the mechanisms by which low temperatures induce apple coloration and high light intensity causes photooxidative sunburn.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8001 ◽  
Author(s):  
Jiangnan Sun ◽  
Xiaomei Chi ◽  
Mingfang Yang ◽  
Jingyun Ding ◽  
Dongtao Shi ◽  
...  

Small sea urchins Strongylocentrotus intermedius (1–2 cm of test diameter) are exposed to different environments of light intensities after being reseeded to the sea bottom. With little information available about the behavioral responses of S. intermedius to different light intensities in the environment, we carried out an investigation on how S. intermedius is affected by three light intensity environments in terms of phototaxis, foraging and righting behaviors. They were no light (zero lx), low light intensity (24–209 lx) and high light intensity (252–2,280 lx). Light intensity had obvious different effects on phototaxis. In low light intensity, sea urchins moved more and spent significantly more time at the higher intensity (69–209 lx) (P = 0.046). S. intermedius in high light intensity, in contrast, spent significantly more time at lower intensity (252–690 lx) (P = 0.005). Unexpectedly, no significant difference of movement (average velocity and total distance covered) was found among the three light intensities (P > 0.05). Foraging behavior of S. intermedius was significantly different among the light intensities. In the no light environment, only three of ten S. intermedius found food within 7 min. In low light intensity, nine of 10 sea urchins showed successful foraging behavior to the food placed at 209 lx, which was significantly higher than the ratio of the number (two of 10) when food was placed at 24 lx (P = 0.005). In the high light intensity, in contrast, significantly less sea urchins (three of 10) found food placed at the higher light intensity (2,280 lx) compared with the lower light intensity (252 lx) (10/10, P = 0.003). Furthermore, S. intermedius showed significantly longer righting response time in the high light intensity compared with both no light (P = 0.001) and low light intensity (P = 0.031). No significant difference was found in righting behavior between no light and low light intensity (P = 0.892). The present study indicates that light intensity significantly affects phototaxis, foraging and righting behaviors of S. intermedius and that ~200 lx might be the appropriate light intensity for reseeding small S. intermedius.


2003 ◽  
Vol 30 (5) ◽  
pp. 515 ◽  
Author(s):  
Katya Georgieva ◽  
Ivanka Fedina ◽  
Liliana Maslenkova ◽  
Violeta Peeva

Barley plants (Hordeum vulgare L.) of wild type and two chlorina mutants, chlorina 126 and chlorina f2, were subjected to 42°C for 5 h at light intensities of 100 and 1000 μmol photons m–2 s–1. The exposure of plants to heat stress at a light intensity of 100 μmol m–2 s–1 induced enormous proline accumulation, indicating that the effect of heat stress was stronger when it was combined with low light intensity. The functional activity of PSII, O2�evolution and flash-induced thermoluminescence B-band amplitude were strongly reduced when plants were exposed to heat at low light intensity. The results clearly showed that high light intensity had a protective effect on photosynthetic activity when barley plants were treated with high temperature. Comparison of the thermosensitivity of wild type plants and chlorina mutants revealed that O2 evolution in chlorina 126 and, especially, in chlorina f2 was more sensitive to heat than in wild type.


Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1287-1293 ◽  
Author(s):  
P. Sun ◽  
X. B. Yang

The purpose of this study was to quantify the effects of light, moisture, and temperature on apothecium production of Sclerotinia sclerotiorum. Sclerotia were placed in sand beds in crispers and exposed to two light intensities. For each light intensity, sclerotia were subjected to five temperature levels and three moisture levels. The results showed that the optimal temperature and temperature range for germination of sclerotia were affected by both light intensity and the moisture level of the sand. At light intensity of 80 to 90 mol m-2 s-1 (low light intensity treatment), the optimal temperatures were in the range of 12 to 18°C regardless of moisture level. At light intensity of 120 to 130 mol m-2 s-1 (high light intensity treatment), the optimal temperature was shifted to 20°C when the soil moisture level was high. Under high light intensity, only a few days were needed for initials to develop into apothecia. Under low light intensity, several weeks were needed for initials to develop into apothecia. The frequency with which initials developed into apothecia was high under high light intensity (80%) but low under low light intensity. The initials produced at low light intensity and high temperature (25 to 30°C) were thinner and longer. The apothecia also were smaller at low light intensity than those produced at high light intensity at any temperature. The periods for apothecium production were longer under lower temperature treatments. The relationship between apothecium production and degree days was analyzed. Apothecium production began at about 160 degree days and ceased at about 900 degree days at high light intensity. However, production began at about 760 degree days and ceased at 1,720 degree days at low light intensity. Nonlinear regression equations which describe the relationship between cumulative formation of apothecia and degree days were highly significant. The deviation between the observed value and the predicted value increased as degree days increased.


1983 ◽  
Vol 25 (5) ◽  
pp. 446-449 ◽  
Author(s):  
Marvin B. Seiger ◽  
Amelia Broach Sanner

Selection was carried out on a population of Drosophila pseudoobscura to obtain lines preferring high-light intensity or low-light intensity during oviposition. This species is generally characterized as preferring low-light intensities. It was possible to select for increased preference for high-light intensity, but not for low-light intensity during oviposition. However, additive genetic variability exists in preferences for both high- and low-light intensities. The original population was probably operating at a photonegative extreme for oviposition, yet maintained enough genetic variability to permit selection toward a photopositive preference.


2000 ◽  
Vol 32 (3) ◽  
pp. 271-289 ◽  
Author(s):  
Yngvar Gauslaa ◽  
Knut Asbjørn Solhaug

AbstractThe annual course of irradiance was recorded at two vertical and even-aged neighbouring Quercus stems, one rich in L. pulmonaria, one without. Irradiance never exceeded 610 μmol photons m−2 s−1 at the L. pulmonaria site, whereas the L. pulmonaria-deficient site could experience 2 h daily 2000 μmol photons m−2 s−1, and 6 h above 1000 μmol photons m−2 s−1 during a clear day in early spring. Thalli of L. pulmonaria were transplanted to these two stems. During the first 40 days (April–May), transplants at the L. pulmonaria-deficient site developed severe chlorophyll degradation, and a substantial reduction in maximal PS II efficiency (Fv/Fm) even when measured after a 48-h recovery period at low light intensity. Extensive bleaching was formed along light-exposed sides of the tiny ridges on the upper side. Subsequent to this damage, FV/FM gradually rose to nearly normal levels during the following year. This apparent recovery was probably mainly due to irreversible loss of damaged chlorophyll, but also to some level of acclimation. No damage was observed in control transplants on the L. pulmonariarich tree, which were the only transplants gaining sufficient growth for new attachment to the new substratum during the 397-day transplantation period. Nevertheless, a fine-scale, but highly significant seasonal variation in FV/FM of control transplants reflected variations of even low irradiance levels. FV/FM, as measured after a 48-h recovery period at low light intensity, is an efficient meth for recording permanent high light damages at and shortly after damage is formed. However, FV/FM is not a useful estimator of chronic long-term damage.


Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 60-63 ◽  
Author(s):  
L. F. Figuerola ◽  
W. R. Furtick

Phytotoxicity of 2-(tert-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine (terbutryn) on winter wheat (Triticum aestivum Vill. ‘Host’) was investigated in a controlled environment. Highly significant differences in foliage dry weight were caused by different light intensities and rates of terbutryn. Injury symptoms appeared much earlier in plants under high light intensity. Carbon dioxide uptake by wheat plants was reduced by terbutryn at high light intensity. At low light intensity the reduction was less severe and developed later. Respiration (CO2 evolved in the dark) was reduced only by the highest rates. Terbutryn was significantly less toxic to wheat than 2-chloro-4,6-bis(ethylamino)-s-triazine (simazine). The difference was more noticeable at low rates under high light intensity. At low light intensity no injury was observed with terbutryn.


Weed Science ◽  
2015 ◽  
Vol 63 (3) ◽  
pp. 578-586 ◽  
Author(s):  
Tracy G. Mellendorf ◽  
Julie M. Young ◽  
Joseph L. Matthews ◽  
Bryan G. Young

Greenhouse studies were conducted to determine the influence of spray-solution pH, adjuvant, light intensity, temperature, and glyphosate on the efficacy of saflufenacil on horseweed. Control of glyphosate-resistant horseweed from saflufenacil alone was greatest with a spray-solution pH of 5, compared with pH 7 or 9. However, when glyphosate was added to saflufenacil, similar GR50values were measured with spray solutions adjusted to pH 5 and 9, and horseweed control at pH 9 was 38% greater than at pH 7. The efficacy of saflufenacil on horseweed was 36% greater when crop oil concentrate was used as an adjuvant compared with nonionic surfactant, regardless of the addition of glyphosate or the sensitivity of the horseweed population to glyphosate (resistant vs. susceptible). The addition of glyphosate to low rates of saflufenacil increased control over saflufenacil applied alone on glyphosate-susceptible and -resistant horseweed. Saflufenacil activity was greater under low light intensity (300 μmol m−2s−1) than high light intensity (1,000 μmol m−2s−1). Although initial horseweed control was greater under high temperature (27 C) compared with low temperature (10 C), by 21 d after treatment horseweed dry weight was similar from saflufenacil applied under high and low temperatures.


2007 ◽  
Vol 132 (6) ◽  
pp. 824-829 ◽  
Author(s):  
Gordon J. Lightbourn ◽  
John R. Stommel ◽  
Robert J. Griesbach

Anthocyanin pigmentation in leaves, flowers, and fruit imparts violet to black color and enhances both ornamental and culinary appeal. Shades of violet to black pigmentation in Capsicum annuum L. are attributed to anthocyanin accumulation. Anthocyanin production is markedly influenced by numerous environmental factors, including temperature and light stress. The objective of this study was to determine the genetic basis for differences in C. annuum anthocyanin content in response to varying environments. Growth experiments conducted under controlled environment conditions demonstrated that anthocyanin concentration was significantly higher in mature leaves in comparison with immature leaves under high light (435 μmol·s−1·m−2) conditions. High (30 °C day/25 °C night) versus low (20 °C day/15 °C night) temperature had no significant effect on anthocyanin concentration regardless of leaf maturity stage. Foliar anthocyanin concentration in plants grown under short days (10 h) with low light intensity (215 μmol·s−1·m−2) was significantly less than under long days (16 h) with low light. Under high light intensity, daylength had no effect on anthocyanin content. Three structural genes [chalcone synthase (Chs), dihydroflavonol reductase (Dfr), anthocyanin synthase (Ans)] and three regulatory genes (Myc, MybA , Wd40) were selected for comparison under inductive and noninductive environmental conditions for anthocyanin accumulation. Expression of Chs, Dfr, and Ans was significantly higher in mature leaves in comparison with younger leaves. Consistent with anthocyanin concentration, temperature had no effect on structural gene expression, whereas light positively influenced expression. Under low light conditions, temperature had no effect on Myc, MybA , and Wd40 expression; whereas under high light conditions, temperature only had an effect on MybA expression. The study of anthocyanin leaf pigmentation in C. annuum under inductive and noninductive environments provides a new approach for elucidating the molecular genetic basis of epistatic gene interactions and the resulting phenotypic plasticity.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Zhong-sheng He ◽  
Rong Tang ◽  
Meng-jia Li ◽  
Meng-ran Jin ◽  
Cong Xin ◽  
...  

Light is a major environmental factor limiting the growth and survival of plants. The heterogeneity of the light environment after gap formation in forest influences the leaf chlorophyll contents, net photosynthetic rate (Pn), and chlorophyll fluorescence, thus influencing the growth and regeneration of Castanopsis kawakamii seedlings. The aim of this study was to explore the effects of weak light on the photosynthetic physiology of C. kawakamii seedlings in forest gaps and non-gaps. The results showed that (1) the contents of chlorophyll a (Chl-a), chlorophyll b (Chl-b), and total chlorophyll (Chl-T) in forest gaps were lower than in non-gaps. Seedlings tended to increase chlorophyll content to absorb light energy to adapt to low light intensity in non-gap environments. (2) The Pn values of C. kawakamii seedlings in forest gaps were significantly higher than in non-gaps, and forest gaps could improve the seedlings’ photosynthetic capacity. (3) The C. kawakamii seedlings in forest gaps were more sensitive to weak light and control group treatment, especially the tall seedlings, indicating that seedlings require more light to satisfy their growth needs in the winter. The seedlings in non-gaps demonstrated better adaptability to low light intensity. The light intensity was not adequate in weak light conditions and limited seedling growth. We suggest that partial forest selection cutting could improve light intensity in non-gaps, thus promoting seedling growth and regeneration of C. kawakamii more effectively in this forest.


Sign in / Sign up

Export Citation Format

Share Document