scholarly journals Selection for ovulation rate in rabbits: Genetic parameters and correlated responses on survival rates1

2012 ◽  
Vol 90 (2) ◽  
pp. 439-446 ◽  
Author(s):  
P. Laborda ◽  
M. L. Mocé ◽  
A. Blasco ◽  
M. A. Santacreu
1990 ◽  
Vol 51 (1) ◽  
pp. 23-34 ◽  
Author(s):  
R. A. Mrode ◽  
C. Smith ◽  
R. Thompson

ABSTRACTSelection of bulls for rate and efficiency of lean gain was studied in a herd of Hereford cattle. There were two selection lines, one selected for lean growth rate (LGR) from birth to 400 days and the other for lean food conversion ratio (LFCR) from 200 to 400 days of age, for a period of 8 years. A control line bred by frozen semen from foundation bulls was also maintained. Generation interval was about 2·4 years and average male selection differentials, per generation were 1·2 and — 1·1 phenotypic standard deviation units for LGR and LFCR respectively.Genetic parameters and responses to selection were estimated from the deviation of the selected lines from a control line and by restricted maximum likelihood (REML) techniques on the same material. Realized heritabilities were 0·40 (s.e. 0·12) for LGR and 0·40 (s.e. 0·13) for LFCR using the control line. Corresponding estimates from REML were 0·42 (s.e. 0·10) and 0·37 (s.e. 0·14). The estimate of the genetic correlation between LGR and LFCR was about — 0·69 (s.e. 0·12) using REML.The estimates of direct annual genetic change using deviations from the control were 3·6 (s.e. 1·3) g/day for LGR and — 0·14 (s.e. 0·07) kg food per kg lean gain for LFCR. Corrsponding estimates from REML were similar but more precisely estimated. The correlated responses for LFCR in the LGR line was higher than the direct response for LFCR.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2591
Author(s):  
Rosa Peiró ◽  
Celia Quirino ◽  
Agustín Blasco ◽  
María Antonia Santacreu

The aim of this work was to estimate correlated responses in growth traits and their variabilities in an experiment of selection for ovulation rate during 10 generations in rabbits. Individual weight at 28 days old (IW28, kg) and at 63 days old (IW63, kg) was analyzed, as well as individual growth rate (IGR = IW63 − IW28, kg). The variability of each growth trait was calculated as the absolute value of the difference between the individual value and the mean value of their litter. Data were analyzed using Bayesian methodology. The estimated heritabilities of IW28, IW63 and IGR were low, whereas negligible heritabilities were obtained for growth variability traits. The common litter effect was high for all growth traits, around 30% of the phenotypic variance, whereas low maternal effect for all growth traits was obtained. Low genetic correlations between ovulation rate and growth traits were found, and also between ovulation rate and the variability of growth traits. Therefore, genetic trends methods did not show correlated responses in growth traits. A similar result was also obtained using a cryopreserved control population.


1967 ◽  
Vol 9 (3) ◽  
pp. 309-330 ◽  
Author(s):  
R. T. Hardin ◽  
A. E. Bell

Parameters necessary for predicting direct and correlated responses for large and small 13-day larval weight in T. castaneum on two levels of nutrition were estimated in the base population. Larval weight in the GOOD environment was approximately twice that observed in POOR. Heritabilities (estimated from the ratio of sire component to total phenotype variance) of larval weight on the two rations were similar, 0·21 ± 0·06 and 0·19 ± 0·05 for GOOD and POOR, respectively. Heritabilities based on dam-offspring covariances were similar to these, but those obtained from full-sib covariances were much larger (0·97 ± 0·07 for GOOD and 0·69 ± 0·07 for POOR). This suggested that considerable dominance rather than maternal effects were present. The genetic correlation between growth on GOOD and growth on POOR was estimated as + 0·60 ± 0·21.The selection experiment was replicated four times with each replication extending over eight generations. Good agreement between predicted and observed values for direct selection was observed for large selection in both environments and small selection in POOR. However, response to small selection in GOOD was significantly greater than predicted in all four replications and was associated with increased selection differentials. Realized heritabilities were approximately the same for both directions in GOOD yet asymmetrical responses occurred for all replications due to unequal selection differentials. On the other hand, realized heritabilities were asymmetrical in POOR. Those observed for small selection were more than twice the size of those calculated for large lines. However, the responses in POOR were symmetrical since the selection differentials varied inversely with the realized heritabilities.Because of the asymmetry observed for heritabilities and selection differentials, correlated responses were poorly predicted. The average effective genetic correlation between growth in GOOD and growth in the POOR environment agreed remarkably well with the base estimate, yet asymmetry of the genetic correlation was a consistent phenomenon with values for the large lines being less than the base parameter while small lines were uniformly larger.Asymmetries of the various genetic parameters were not anticipated from base estimates. They were not caused by sampling or chance fluctuations since all four replications were remarkably consistent. Asymmetry for any one genetic parameter (e.g. heritability) was associated with a particular environment or direction of selection while other genetic parameters reacted asymmetrically in populations exposed to a different set of environmental treatments.For maximum performance in a single environment, these results show that selection should be practiced in that environment. With regard to mean performance in GOOD and POOR environments, selection for large size in POOR gave some 25% more gain than selection in GOOD. Selection for small size in either environment was equally effective in obtaining minimum size in both environments.


2012 ◽  
Vol 90 (10) ◽  
pp. 3392-3397 ◽  
Author(s):  
P. Laborda ◽  
M. A. Santacreu ◽  
A. Blasco ◽  
M. L. Mocé

2014 ◽  
Vol 47 (7) ◽  
pp. 2139-2149 ◽  
Author(s):  
Azhar Hamzah ◽  
Nguyen Hong Nguyen ◽  
Wagdy Mekkawy ◽  
Raul W Ponzoni ◽  
Hooi Ling Khaw ◽  
...  

Author(s):  
K.D. Atkins

There are few published studies on the genetics of body growth to maturity in sheep. Such information is required for choosing an optimal time of selection for body weight and to predict correlated responses to selection at all stages of an animal's lifetime. The data were derived from a randomly selected control flock of Scottish Blackface sheep on a hard heather hill research farm in Peeblesshire, Scotland. The objectives of the analysis were to estimate the heritability of body weight at various ages between birth and maturity, and the genetic correlations between these weights.


Sign in / Sign up

Export Citation Format

Share Document