Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1

2011 ◽  
Vol 89 (10) ◽  
pp. 2981-2987 ◽  
Author(s):  
P. Laborda ◽  
M. L. Mocé ◽  
M. A. Santacreu ◽  
A. Blasco
1994 ◽  
Vol 59 (2) ◽  
pp. 263-269 ◽  
Author(s):  
N. D. Cameron ◽  
M. K. Curran

AbstractResponses to divergent selection for lean growth rate with ad-libitum feeding (LGA), for lean food conversion (LFC) and for daily food intake (DFI) in Landrace pigs were studied. Selection was practised for four generations with a generation interval ofl year. A total of 2642 pigs were performance tested in the high, low and control lines, with an average of 37 boars and 39 gilts performance tested per selection line in each generation. The average within-line inbreeding coefficient at generation four was equal to 0·04. There was one control line for the DFI and LFC selection groups and another control line for the LGA selection group. Animals were performance tested in individual pens with mean starting and finishing weights of 30 kg and 85 kg respectively with ad-libitum feeding. The selection criteria had phenotypic s.d. of 32, 29 and 274 units, for LGA, LFC and DFI, respectively, and results are presented in phenotypic s.d.Cumulative selection differentials (CSD) were 5·1, 4·5 and 5·5 phenotypic s.d. for LGA, LFC and DFI, respectively. Direct responses to selection were 1·4,1·1 and 0·9 (s.e. 0·20) for LGA, LFC and DFI. In each of the three selection groups, the CSD and direct responses to selection were symmetric about the control lines. The correlated response in LFC (1·1, s.e. 0·19) with selection on LGA was equal to the direct response in LFC. In contrast, the direct response in LGA was greater than the correlated response (0·7, s.e. 0·18) with selection on LFC. There was a negative correlated response in DFI (-0·6, s.e. 0·18) with selection on LFC, but the response with selection on LGA was not significant (0·2, s.e. 0·16).Heritabilities for LGA, LFC and DFI ivere 0·25, 0·25 and 0·18 (s.e. 0·03), when estimated by residual maximum likelihood, with common environmental effects of 0·12 (s.e. 0·02). Genetic correlations for LFC with LGA and DFI were respectively positive (0·87, s.e. 0·02) and negative (-0·36, s.e. 0·09), while the genetic correlation between DFI and LGA was not statistically different from zero, 0·13 (s.e. 0·10). Selection on components of efficient lean growth has identified LGA as an effective selection objective for improving both LGA and LFC, without a reduction in DFI.


1990 ◽  
Vol 51 (1) ◽  
pp. 23-34 ◽  
Author(s):  
R. A. Mrode ◽  
C. Smith ◽  
R. Thompson

ABSTRACTSelection of bulls for rate and efficiency of lean gain was studied in a herd of Hereford cattle. There were two selection lines, one selected for lean growth rate (LGR) from birth to 400 days and the other for lean food conversion ratio (LFCR) from 200 to 400 days of age, for a period of 8 years. A control line bred by frozen semen from foundation bulls was also maintained. Generation interval was about 2·4 years and average male selection differentials, per generation were 1·2 and — 1·1 phenotypic standard deviation units for LGR and LFCR respectively.Genetic parameters and responses to selection were estimated from the deviation of the selected lines from a control line and by restricted maximum likelihood (REML) techniques on the same material. Realized heritabilities were 0·40 (s.e. 0·12) for LGR and 0·40 (s.e. 0·13) for LFCR using the control line. Corresponding estimates from REML were 0·42 (s.e. 0·10) and 0·37 (s.e. 0·14). The estimate of the genetic correlation between LGR and LFCR was about — 0·69 (s.e. 0·12) using REML.The estimates of direct annual genetic change using deviations from the control were 3·6 (s.e. 1·3) g/day for LGR and — 0·14 (s.e. 0·07) kg food per kg lean gain for LFCR. Corrsponding estimates from REML were similar but more precisely estimated. The correlated responses for LFCR in the LGR line was higher than the direct response for LFCR.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2591
Author(s):  
Rosa Peiró ◽  
Celia Quirino ◽  
Agustín Blasco ◽  
María Antonia Santacreu

The aim of this work was to estimate correlated responses in growth traits and their variabilities in an experiment of selection for ovulation rate during 10 generations in rabbits. Individual weight at 28 days old (IW28, kg) and at 63 days old (IW63, kg) was analyzed, as well as individual growth rate (IGR = IW63 − IW28, kg). The variability of each growth trait was calculated as the absolute value of the difference between the individual value and the mean value of their litter. Data were analyzed using Bayesian methodology. The estimated heritabilities of IW28, IW63 and IGR were low, whereas negligible heritabilities were obtained for growth variability traits. The common litter effect was high for all growth traits, around 30% of the phenotypic variance, whereas low maternal effect for all growth traits was obtained. Low genetic correlations between ovulation rate and growth traits were found, and also between ovulation rate and the variability of growth traits. Therefore, genetic trends methods did not show correlated responses in growth traits. A similar result was also obtained using a cryopreserved control population.


1987 ◽  
Vol 50 (1) ◽  
pp. 7-15 ◽  
Author(s):  
B. Vivi Hunnicke Nielsen ◽  
Søren Andersen

SummaryMice were selected for growth from 3 to 9 weeks of age on a normal protein diet (N) containing 19·3% protein and a reduced protein diet (R) containing 5·1% protein. On each diet there were 3 high (H), 3 low (L) and 3 unselected control (C) lines. After 6 generations of selection, half of the mice in each line were tested on each diet. Responses were obtained when selecting for both increased and decreased growth on both diets. The realized heritabilities from within-family selection were 33 and 26% for the divergences on the normal and reduced protein diets, respectively. Consistent genotype-environment interactions were found when all lines were tested on both diets in generation 7. Performance on each protein level was best improved by selection on that protein level. Further, the correlated response was significantly less than the direct response when selecting on both diets. The estimates of the genetic correlation between growth on the two protein levels were low, rN = 0·16 from selection on the normal protein diet and rR = 0·51 from selection on the reduced protein diet. Selection resulted in a change in environmental sensitivity in the lines, dependent on the diet and direction of selection. The average of the divergences on the two diets was not dependent on the selection environment.


2012 ◽  
Vol 90 (2) ◽  
pp. 439-446 ◽  
Author(s):  
P. Laborda ◽  
M. L. Mocé ◽  
A. Blasco ◽  
M. A. Santacreu

1979 ◽  
Vol 48 (3) ◽  
pp. 509-516 ◽  
Author(s):  
P. J. Cunningham ◽  
M. E. England ◽  
L. D. Young ◽  
Dwane R. Zimmerman

1991 ◽  
Vol 74 (9) ◽  
pp. 3209-3222 ◽  
Author(s):  
R.R. Bonczek ◽  
D.O. Richardson ◽  
E.D. Moore ◽  
R.H. Miller ◽  
J.R. Owen ◽  
...  

1994 ◽  
Vol 59 (2) ◽  
pp. 251-262 ◽  
Author(s):  
N. D. Cameron

AbstractResponses to four generations of divergent selection for lean groivth rate with ad-libitum feeding (LGA), for lean food conversion (LFC) and for daily food intake (DFI) in Large White pigs were studied. The LGA (LFC) selection criterion was designed to obtain equal correlated responses in growth rate (food conversion ratio) and carcass lean content, measured in phenotypic s.d. The selection criteria had phenotypic s.d. of 27, 29 and 253 units, respectively, and results are presented in s.d. units. There was a total of 3537 pigs, with an average of 40 boars and 40 gilts performance tested in each of the high, low and control lines per generation and the lines consisted of 10 sires and 20 dams. The generation interval was equal to 13·5 months. Animals were performance tested in individual pens with mean starting and finishing weights of 30 kg and 85 kg respectively.Cumulative selection differentials in the three selection groups were 5·8, 3·6 and 3·3 phenotypic s.d. for LGA, LFC and DFI respectively. Direct responses to divergent selection were 1·7, 1·3 and 1·2 (s.e. 0·17) for LGA, LFC and DFI. The correlated response in LFC (1·6 (s.e. 0·18)) with selection on LGA was greater than the direct response in LFC. Conversely, the direct response in LGA was greater than the correlated response (1·1 (s.e. 0·18)) with selection on LFC. The response in LFC (–1·1 (s.e. 0·17)) with selection on DFI was similar in size but opposite in sign to the direct response in LFC. Responses were asymmetric about the control, as the high LGA and LFC responses were proportionately smaller (0·74 and 0·58) than low line responses. In contrast, the difference between the high DFI and control was four times greater than the difference between low line and control.Heritabilities of LGA, LFC and DFI were 0·38, 0·35 and 0·29 (s.e. 0·03), when estimated by residual maximum likelihood, with common environmental effects of 0·09 (s.e. 0·02). Genetic correlations for LGA with LFC and DFI were positive, 0·76 (s.e. 0·03) and 0·23 (s.e. 0·07), but the genetic correlation between DFI and LFC was negative, –0·45 (s.e. 0·06). The experiment demonstrated that substantial responses to selection can be achieved in LGA, LFC and DFI. Selection on LGA resulted in larger direct and correlated responses than selection on LFC.


Author(s):  
Mohammed Naser Boareki ◽  
Luiz Brito ◽  
Angela Cánovas ◽  
V.R. Osborne ◽  
Flavio S Schenkel

The goal of this study was to estimate genetic parameters and predict direct and correlated response to selection for lamb growth traits and ewe reproductive traits, based on single trait selection or combining multiple traits in an optimum index that targets total litter post-weaning weight in the first lambing as the main selection goal. Heritability estimates ranged from 0.04 to 0.19. Genetic correlations between growth and reproductive traits ranged from -0.24 to 0.15. The indirect response to selection for reproductive traits in later lambings, by selecting on first lambing performance, was 11 to 25% greater than direct selection. The response to indirect selection for composite reproductive traits, i.e. total weaning weight or total post-weaning weight, by selecting on individual lamb weaning weight or post-weaning weight was 1 to 69% greater than direct selection, but it was accompanied by a negative response on litter size. However, combining alternate growth and reproductive traits in optimum selection index resulted in correlated response of up to 96% greater than direct selection response for reproductive traits without a negative response on litter size. Therefore, multiple trait selection using an index of component traits was more effective than direct selection for a composite trait.


Sign in / Sign up

Export Citation Format

Share Document