scholarly journals ELECTROMAGNETIC SCATTERING MODEL FOR RICE CANOPY BASED ON MONTE CARLO SIMULATION

2005 ◽  
Vol 52 ◽  
pp. 153-171 ◽  
Author(s):  
Li-Fang Wang ◽  
Jin Au Kong ◽  
K. H. Ding ◽  
T. Le Toan ◽  
F. Ribbes ◽  
...  
1978 ◽  
Vol 31 (4) ◽  
pp. 299 ◽  
Author(s):  
HA Blevin ◽  
J Fletcher ◽  
SR Hunter

Hunter (1977) found that a Monte-Carlo simulation of electron swarms in hydrogen, based on an isotropic scattering model, produced discrepancies between the predicted and measured electron transport parameters. The present paper shows that, with an anisotropic scattering model, good agreement is obtained between the predicted and experimental data. The simulation code is used here to calculate various parameters which are not directly measurable.


AIP Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 105019
Author(s):  
Jieshu Jia ◽  
Ruilin Gao ◽  
Baozhuo Xie ◽  
Zichang Liang ◽  
Feiming Wei ◽  
...  

2020 ◽  
Vol 76 (1) ◽  
pp. 70-78
Author(s):  
Wazir Muhammad ◽  
Ying Liang ◽  
Gregory R. Hart ◽  
Bradley J. Nartowt ◽  
Jun Deng

The acceptance–rejection technique has been widely used in several Monte Carlo simulation packages for Rayleigh scattering of photons. However, the models implemented in these packages might fail to reproduce the corresponding experimental and theoretical results. The discrepancy is attributed to the fact that all current simulations implement an elastic scattering model for the angular distribution of photons without considering anomalous scattering effects. In this study, a novel Rayleigh scattering model using anomalous scattering factors based on the inverse-sampling technique is presented. Its performance was evaluated against other simulation algorithms in terms of simulation accuracy and computational efficiency. The computational efficiency was tested with a general-purpose Monte Carlo package named Particle Transport in Media (PTM). The evaluation showed that a Monte Carlo model using both atomic form factors and anomalous scattering factors for the angular distribution of photons (instead of the atomic form factors alone) produced Rayleigh scattering results in closer agreement with experimental data. The comparison and evaluation confirmed that the inverse-sampling technique using atomic form factors and anomalous scattering factors exhibited improved computational efficiency and performed the best in reproducing experimental measurements and related scattering matrix calculations. Furthermore, using this model to sample coherent scattering can provide scientific insight for complex systems.


Sign in / Sign up

Export Citation Format

Share Document