scholarly journals ULTRA-WIDE BANDWIDTH MICROSTRIP MONOPOLE ANTENNA BY USING ELECTROMAGNETIC BAND-GAP STRUCTURES

2011 ◽  
Vol 23 ◽  
pp. 109-118 ◽  
Author(s):  
Dalia Mohammed Nasha Elsheakh ◽  
Hala A. Elsadek ◽  
Esmat Abdel-Fattah Abdallah ◽  
Hadia M. El-Hennawy ◽  
Magdy F. Iskander
2014 ◽  
Author(s):  
Amir I. Zaghloul ◽  
Youn M. Lee ◽  
Gregory A. Mitchell ◽  
Theodore K. Anthony

Circuit World ◽  
2017 ◽  
Vol 43 (2) ◽  
pp. 56-62 ◽  
Author(s):  
El Amjed Hajlaoui

Purpose The purpose of this paper is to present a new dual-band printed monopole antenna with a partial ground with two notched bands based on electromagnetic band gap (EBG) structures. A new type of EBG antenna with radiation patterns and antenna gains over the operating bands has been developed. Design/methodology/approach The proposed antenna consists of a pair of EBG structures using a transmission line model. The proposed antenna is designed on an FR4 substrate with a thickness of 1 mm and permittivity (er) = 4.3. Findings The measured results show good dual-band operations with −10 dB impedance bandwidths of 9.1 and 36.2 per cent centered at 2.45 and 6.364 GHz, respectively, which covers the wireless local area network (WLAN) operating bands. Originality/value A new type of EBG antenna with radiation patterns and antenna gains over the operating bands has been developed.


2018 ◽  
Vol 10 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Dalia M. Elsheakh ◽  
Esmat A. Abdallah

This paper presents a procedure to model an ultra wide-bandwidth (UWB) microstrip monopole antenna. The proposed antenna is composed of three different lengths of semi-circular shapes connected with circular disk and half circular modified ground plane. The proposed antenna has a size of 50 × 50 mm2on a low-cost FR4 substrate. The antenna demonstrates impedance bandwidth of −10 dB extended from 1.5 to 11 GHz with discontinuous bandwidth at different interior operating bands. Two pairs of split ring resonator as metamaterial structure cells are inserted closely located from feeding transmission line of the antenna to achieve good impedance matching over the entire band of operation and improve the antenna performance. The fundamental parameters of the antenna including reflection coefficient, gain, radiation pattern and group delay are obtained and they meet the acceptable UWB antenna standard. High-frequency structure simulator ver. 14 is used as full-wave electromagnetic solver then the prototypes are fabricated and measured. Results show that the antenna is very suitable for the applications in UWB as well as wireless communication systems.


2021 ◽  
pp. 899-910
Author(s):  
Prasanna G. Paga ◽  
H. C. Nagaraj ◽  
V. P. SaiKarthik ◽  
B. R. Bhuvan

Sign in / Sign up

Export Citation Format

Share Document