scholarly journals A U-SHAPED MEANDERED SLOT ANTENNA FOR BIOMEDICAL APPLICATIONS

2017 ◽  
Vol 62 ◽  
pp. 65-77 ◽  
Author(s):  
Shikha Sukhija ◽  
Rakesh Kumar Sarin
2013 ◽  
Vol 6 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Srinivasan Ashok Kumar ◽  
Thangavelu Shanmuganantham

A novel coplanar waveguide fed Industrial, Scientific, and Medical (ISM) band implantable crossed-type triangular slot antenna is proposed for biomedical applications. The antenna operates at the center frequency of 2450 MHz, which is in ISM band, to support GHz wideband communication for high-data rate implantable biomedical application. The size of the antenna is 78 mm3 (10 mm × 12 mm × 0.65 mm). The simulated and measured bandwidths are 7.9 and 8.2% at the resonant frequency of 2.45 GHz. The specific absorption rate distribution induced by the implantable antenna inside a human body tissue model is evaluated. The communication between the implanted antenna and external device is also examined. The proposed antenna has substantial merits such as miniaturization, lower return loss, better impedance matching, and high gain over other implanted antennas.


2021 ◽  
Vol 19 ◽  
pp. 38-44
Author(s):  
Shilpee Patil ◽  
Vinod Kapse ◽  
Shruti Sharma ◽  
Anil Kumar Pandey

In this study, a low-profile, co-planar waveguide (CPW) fed, wideband, and dual-ring slot antenna design for biomedical applications is proposed. The proposed antenna has a total area of 10 mm × 10 mm and a height of 0.4 mm, and is designed by using a thin and biocompatible FR4 epoxy (εr = 4.4) substrate to accomplish human body isolation and great flexibility obtained by implantation. This wideband antenna covers a large bandwidth of industrial scientific and medical (ISM) frequency band, including 902.8 MHz to 928 MHz, 1.395 GHz to 1.4 GHz, 1.427 GHz to 1.432 GHz, 2.4 GHz to 2.485 GHz, and above. The simulation results of return loss, voltage standing wave ratio (VSWR), impedance matching, gain, and radiation pattern of the proposed antenna are obtained through High Frequency Structure Simulator (HFSS) 14 software.


2013 ◽  
Vol 49 (17) ◽  
pp. 1060-1061 ◽  
Author(s):  
Li‐Jie Xu ◽  
Yong‐Xin Guo ◽  
Wen Wu

Author(s):  
Xuyang Li ◽  
M. Jalilvand ◽  
T. Zwick ◽  
W. Wiesbeck ◽  
W. You

Sign in / Sign up

Export Citation Format

Share Document