scholarly journals Development of non-invasive viscoelasticity measurement system for embryo viability

1997 ◽  
Vol 18 (Supplement) ◽  
pp. 153-156
2015 ◽  
Vol 39 (4) ◽  
Author(s):  
N. K. Suryadevara ◽  
S. C. Mukhopadhyay ◽  
L. Barrack

2020 ◽  
Vol 9 (3) ◽  
pp. 924-932
Author(s):  
Agustami Sitorus ◽  
Novrinaldi Novrinaldi ◽  
Ramayanty Bulan

Moisture content in the process of drying is often unknown when carrying out the drying process, especially the fluidized dryer. A lot of experimental designs are needed when observing the drying phenomenon more deeply.  It is because to stop and repeat drying process from the beginning again when the sample is taken to test its moisture content needed more experiments. Therefore, this paper presents development of a non-intrusive moisture measurement system prepared for fluidization type dryers. The method used in to conduct this research consists of (i) structural design analysis and (ii) functional (mechanical and electrical systems) and (iii) simple testing of the water content measurement system of constructed material. Test parameters observed include errors in measuring and fluctuating sensor signals against vibration applied to the weighing system. The results showed that non-intrusive moisture content measurement system for fluidized dryers based on the ESP8266 microcontroller had been successfully developed and worked normally. The measurement system has been calibrated with a coefficient of determination (R2) close to one. Measurement error resulting from the effect of vibration on this system shows a very satisfactory value of 6.89%.


2018 ◽  
Author(s):  
Ning Ma ◽  
Nabora Reyes de Mochel ◽  
Paula Duyen Anh Pham ◽  
Tae Yeon Yoo ◽  
Ken WY. Cho ◽  
...  

AbstractDevelopment of quantitative, safe and rapid techniques for assessing embryo quality provides significant advances in Assisted Reproductive Technologies (ART). We apply the phasor-FLIM method to capture endogenous fluorescent biomarkers of pre-implantation embryos as a non-morphological caliber for embryo quality. Here, we identify the developmental, or “D-trajectory”, that consists of fluorescence lifetime from different stages of mouse pre-implantation embryos. The D-trajectory correlates with intrinsic fluorescent species from a distinctive energy metabolism and oxidized lipids, as seen with Third Harmonic Generation (THG) that changes over time. In addition, we have defined an Embryo Viability Index (EVI) to distinguish pre-implantation embryo quality using the Distance Analysis, a machine learning algorithm to process the fluorescence lifetime distribution patterns. We show that the phasor-FLIM approach provides a much-needed non-invasive quantitative technology for identifying healthy embryos at the early compaction stage with 86% accuracy. This may increase embryo implantation success for in vitro fertilization clinics.HighlightsA label-free method of tracking metabolic trajectories during pre-implantation mouse embryo development.A non-invasive approach for assessing embryo quality and viability by a phasor-FLIM analysis.


Sign in / Sign up

Export Citation Format

Share Document