scholarly journals Characterization of Nanomaterials with Total Scattering and Pair Distribution Function Analysis: Examples from Metal Oxide Nanochemistry

2021 ◽  
Vol 75 (5) ◽  
pp. 368-375
Author(s):  
Kirsten M. Ø. Jensen

The development of new functional nanomaterials builds on an understanding of the intricate relation between material structure and properties. Only by knowing the atomic arrangement can the mechanisms responsible for material properties be elucidated and new materials and technologies developed. Nanomaterials challenge the crystallographic techniques often used for structure characterization, and the structure of many nanomaterials are therefore often assumed to be 'cut-outs' of the corresponding bulk material. Here, I will discuss how Pair Distribution Function (PDF) analysis of total scattering data can aid nanochemists in obtaining a structural understanding of nanoscale materials, focusing on examples from metal oxide chemistry.

2020 ◽  
Vol 53 (3) ◽  
pp. 699-709 ◽  
Author(s):  
Chia-Hao Liu ◽  
Eric M. Janke ◽  
Ruipen Li ◽  
Pavol Juhás ◽  
Oleg Gang ◽  
...  

SASPDF, a method for characterizing the structure of nanoparticle assemblies (NPAs), is presented. The method is an extension of the atomic pair distribution function (PDF) analysis to the small-angle scattering (SAS) regime. The PDFgetS3 software package for computing the PDF from SAS data is also presented. An application of the SASPDF method to characterize structures of representative NPA samples with different levels of structural order is then demonstrated. The SASPDF method quantitatively yields information such as structure, disorder and crystallite sizes of ordered NPA samples. The method was also used to successfully model the data from a disordered NPA sample. The SASPDF method offers the possibility of more quantitative characterizations of NPA structures for a wide class of samples.


2019 ◽  
Vol 33 (33) ◽  
pp. 1950410 ◽  
Author(s):  
Ahmad S. Masadeh ◽  
Moneeb T. M. Shatnawi ◽  
Ghosoun Adawi ◽  
Yang Ren

The crystal structure of zinc metal deviates from the ideal hexagonal close packing structure by a significantly increased axial ratio (c/a). The local atomic structure of zinc metal is investigated using the total scattering atomic pair distribution function (PDF) analysis based on X-ray powder diffraction data collected at ambient conditions. The X-ray total scattering PDF analysis confirms that the crystal structure of zinc can be described in terms of wurtzite structure, but with an anomalously atomic displacement parameters [Formula: see text], indicating a significant displacement disorder along the [Formula: see text]-axis. For the long [Formula: see text]-range PDF refinements, the thermal motion of zinc shows a notable anisotropy as expressed by the ratio [Formula: see text]/[Formula: see text] of 2.5 at ambient conditions. This average distortion level along the [Formula: see text]-axis, was not reflected locally for the features below 5.0 Å as it fits the high [Formula: see text] region. Based on PDF refinements over different [Formula: see text]-ranges, we measure an interesting increase of the [Formula: see text] value with decreasing the [Formula: see text]-range of the refinement. This suggests that the local structure features in zinc metal differ from the average structure ones.


Nanoscale ◽  
2020 ◽  
Vol 12 (31) ◽  
pp. 16462-16473
Author(s):  
Margarita Rekhtina ◽  
Alessandro Dal Pozzo ◽  
Dragos Stoian ◽  
Andac Armutlulu ◽  
Felix Donat ◽  
...  

We use pair distribution function analysis of in situ total scattering data and complementary techniques to reveal how molten NaNO3 modifies the decomposition pathways of a hydrated magnesium carbonate to the formation of MgO.


2011 ◽  
Vol 44 (4) ◽  
pp. 788-797 ◽  
Author(s):  
Katharine Mullen ◽  
Igor Levin

Information on the size and structure of nanoparticles can be obtainedviaanalysis of the atomic pair distribution function (PDF), which is calculated as the Fourier transform of X-ray/neutron total scattering. The structural parameters are commonly extracted by fitting a model PDF calculated from atomic coordinates to the experimental data. This paper discusses procedures for minimizing systematic errors in PDF calculations for nanoparticles and also considers the effects of noise due to counting statistics in total scattering data used to obtain the PDF. The results presented here demonstrate that smoothing of statistical noise in reciprocal-space data can improve the precision of parameter estimates obtained from PDF analysis, facilitating identification of the correct model (from multiple plausible choices) from real-space PDF fits.


2011 ◽  
Vol 44 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Katharine Page ◽  
Taylor C. Hood ◽  
Thomas Proffen ◽  
Reinhard B. Neder

High-energy X-ray and spallation neutron total scattering data provide information about each pair of atoms in a nanoparticle sample, allowing for quantitative whole-particle structural modeling based on pair distribution function analysis. The realization of this capability has been hindered by a lack of versatile tools for describing complex finite structures. Here, the implementation of whole-particle refinement for complete nanoparticle systems is described within two programs,DISCUSandDIFFEV, and the diverse capabilities they present are demonstrated. The build-up of internal atomic structure (including defects, chemical ordering and other types of disorder), and nanoparticle size, shape and architecture (including core–shell structures, surface relaxation and ligand capping), are demonstrated using the programDISCUS. The structure refinement of a complete nanoparticle system (4 nm Au particles with organic capping ligands at the surface), based on neutron pair distribution function data, is demonstrated usingDIFFEV, a program using a differential evolutionary algorithm to generate parameter values. These methods are a valuable addition to other probes appropriate for nanomaterials, adaptable to a diverse and complex set of materials systems, and extendable to additional data-set types.


IUCrJ ◽  
2016 ◽  
Vol 3 (1) ◽  
pp. 20-31 ◽  
Author(s):  
Ross E. Whitfield ◽  
Darren J. Goossens ◽  
T. Richard Welberry

The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.


2018 ◽  
Vol 74 (4) ◽  
pp. 293-307 ◽  
Author(s):  
Daniel Olds ◽  
Claire N. Saunders ◽  
Megan Peters ◽  
Thomas Proffen ◽  
Joerg Neuefeind ◽  
...  

Total scattering and pair distribution function (PDF) methods allow for detailed study of local atomic order and disorder, including materials for which Rietveld refinements are not traditionally possible (amorphous materials, liquids, glasses and nanoparticles). With the advent of modern neutron time-of-flight (TOF) instrumentation, total scattering studies are capable of producing PDFs with ranges upwards of 100–200 Å, covering the correlation length scales of interest for many materials under study. Despite this, the refinement and subsequent analysis of data are often limited by confounding factors that are not rigorously accounted for in conventional analysis programs. While many of these artifacts are known and recognized by experts in the field, their effects and any associated mitigation strategies largely exist as passed-down `tribal' knowledge in the community, and have not been concisely demonstrated and compared in a unified presentation. This article aims to explicitly demonstrate, through reviews of previous literature, simulated analysis and real-world case studies, the effects of resolution, binning, bounds, peak shape, peak asymmetry, inconsistent conversion of TOF to d spacing and merging of multiple banks in neutron TOF data as they directly relate to real-space PDF analysis. Suggestions for best practice in analysis of data from modern neutron TOF total scattering instruments when using conventional analysis programs are made, as well as recommendations for improved analysis methods and future instrument design.


Sign in / Sign up

Export Citation Format

Share Document