scholarly journals Total scattering and pair distribution function analysis in modelling disorder in PZN (PbZn1/3Nb2/3O3)

IUCrJ ◽  
2016 ◽  
Vol 3 (1) ◽  
pp. 20-31 ◽  
Author(s):  
Ross E. Whitfield ◽  
Darren J. Goossens ◽  
T. Richard Welberry

The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.

2019 ◽  
Vol 33 (33) ◽  
pp. 1950410 ◽  
Author(s):  
Ahmad S. Masadeh ◽  
Moneeb T. M. Shatnawi ◽  
Ghosoun Adawi ◽  
Yang Ren

The crystal structure of zinc metal deviates from the ideal hexagonal close packing structure by a significantly increased axial ratio (c/a). The local atomic structure of zinc metal is investigated using the total scattering atomic pair distribution function (PDF) analysis based on X-ray powder diffraction data collected at ambient conditions. The X-ray total scattering PDF analysis confirms that the crystal structure of zinc can be described in terms of wurtzite structure, but with an anomalously atomic displacement parameters [Formula: see text], indicating a significant displacement disorder along the [Formula: see text]-axis. For the long [Formula: see text]-range PDF refinements, the thermal motion of zinc shows a notable anisotropy as expressed by the ratio [Formula: see text]/[Formula: see text] of 2.5 at ambient conditions. This average distortion level along the [Formula: see text]-axis, was not reflected locally for the features below 5.0 Å as it fits the high [Formula: see text] region. Based on PDF refinements over different [Formula: see text]-ranges, we measure an interesting increase of the [Formula: see text] value with decreasing the [Formula: see text]-range of the refinement. This suggests that the local structure features in zinc metal differ from the average structure ones.


2021 ◽  
Vol 75 (5) ◽  
pp. 368-375
Author(s):  
Kirsten M. Ø. Jensen

The development of new functional nanomaterials builds on an understanding of the intricate relation between material structure and properties. Only by knowing the atomic arrangement can the mechanisms responsible for material properties be elucidated and new materials and technologies developed. Nanomaterials challenge the crystallographic techniques often used for structure characterization, and the structure of many nanomaterials are therefore often assumed to be 'cut-outs' of the corresponding bulk material. Here, I will discuss how Pair Distribution Function (PDF) analysis of total scattering data can aid nanochemists in obtaining a structural understanding of nanoscale materials, focusing on examples from metal oxide chemistry.


2020 ◽  
Vol 53 (3) ◽  
pp. 699-709 ◽  
Author(s):  
Chia-Hao Liu ◽  
Eric M. Janke ◽  
Ruipen Li ◽  
Pavol Juhás ◽  
Oleg Gang ◽  
...  

SASPDF, a method for characterizing the structure of nanoparticle assemblies (NPAs), is presented. The method is an extension of the atomic pair distribution function (PDF) analysis to the small-angle scattering (SAS) regime. The PDFgetS3 software package for computing the PDF from SAS data is also presented. An application of the SASPDF method to characterize structures of representative NPA samples with different levels of structural order is then demonstrated. The SASPDF method quantitatively yields information such as structure, disorder and crystallite sizes of ordered NPA samples. The method was also used to successfully model the data from a disordered NPA sample. The SASPDF method offers the possibility of more quantitative characterizations of NPA structures for a wide class of samples.


2018 ◽  
Vol 74 (4) ◽  
pp. 293-307 ◽  
Author(s):  
Daniel Olds ◽  
Claire N. Saunders ◽  
Megan Peters ◽  
Thomas Proffen ◽  
Joerg Neuefeind ◽  
...  

Total scattering and pair distribution function (PDF) methods allow for detailed study of local atomic order and disorder, including materials for which Rietveld refinements are not traditionally possible (amorphous materials, liquids, glasses and nanoparticles). With the advent of modern neutron time-of-flight (TOF) instrumentation, total scattering studies are capable of producing PDFs with ranges upwards of 100–200 Å, covering the correlation length scales of interest for many materials under study. Despite this, the refinement and subsequent analysis of data are often limited by confounding factors that are not rigorously accounted for in conventional analysis programs. While many of these artifacts are known and recognized by experts in the field, their effects and any associated mitigation strategies largely exist as passed-down `tribal' knowledge in the community, and have not been concisely demonstrated and compared in a unified presentation. This article aims to explicitly demonstrate, through reviews of previous literature, simulated analysis and real-world case studies, the effects of resolution, binning, bounds, peak shape, peak asymmetry, inconsistent conversion of TOF to d spacing and merging of multiple banks in neutron TOF data as they directly relate to real-space PDF analysis. Suggestions for best practice in analysis of data from modern neutron TOF total scattering instruments when using conventional analysis programs are made, as well as recommendations for improved analysis methods and future instrument design.


2020 ◽  
Vol 22 (34) ◽  
pp. 18860-18867 ◽  
Author(s):  
Matthew E. Potter ◽  
Mark E. Light ◽  
Daniel J. M. Irving ◽  
Alice E. Oakley ◽  
Stephanie Chapman ◽  
...  

Novel in situ synchrotron total scattering measurements probe the assembly of primary building units into templated hierarchically porous aluminophosphate catalysts, providing unique insights to understanding crystallisation kinetics.


1972 ◽  
Vol 50 (15) ◽  
pp. 1756-1763 ◽  
Author(s):  
B. B. J. Hede ◽  
J. P. Carbotte

Correlations in an electron gas are particularly important at metallic densities because the potential energy cannot be ignored in comparison with the kinetic energy; in particular, interactions are not weak as r → 0, so that a simple Born approximation does not hold in this limit. Short-range correlations between oppositely-spinned electrons can be accounted for by an infinite series of particle–particle ladder diagrams. It leads to a Bethe–Goldstone type of equation which can be solved by an angle-averaged approximation. The resultant spin-up-down p.d.f. is positive over a wide range of metallic densities. A further correction by including particle–hole scattering effects changes the previous results only slightly.


Sign in / Sign up

Export Citation Format

Share Document