scholarly journals Simulation of unsteady gas-particle flow induced by the shock-wave interaction with a particle layer

Author(s):  
В.Н. Емельянов ◽  
К.Н. Волков ◽  
А.Г. Карпенко ◽  
И.В. Тетерина

На основе модели взаимопроникающих континуумов проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны со слоем инертных частиц. Каждая фаза описывается набором уравнений, выражающих законы сохранения массы, импульса и энергии. Межфазное взаимодействие учитывается при помощи источниковых членов в уравнениях изменения количества движения и энергии. Основные уравнения для газовой и дисперсной фаз имеют гиперболический тип, допускают запись в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Для дискретизации уравнений по времени применяется метод Рунге-Кутты 3-го порядка. Построенная модель позволяет рассчитывать широкий спектр режимов течения газовзвеси, возникающих при изменении объемной концентрации дисперсной фазы. Обсуждаются вопросы, связанные с замыканием математической модели, а также детали реализации численной модели. Приводятся ударно-волновая структура течения и пространственно-временные зависимости концентрации частиц и других параметров потока. A numerical simulation of the unsteady gas-particle flow arising from the shock-wave interaction with a layer of inert particles is performed based on a continuum model. Each phase is described by a set of equations describing the conservation laws of mass, momentum and energy. The interphase interaction is taken into account using source terms in the momentum and energy equations. The governing equations for the gas and dispersed phases are of a hyperbolic type, they can be written in a conservative form and can be solved with a Godunov-type numerical method. A third order Runge-Kutta method is used to discretize the governing equations in time. The proposed model allows one to calculate a wide range of gas-particle flow regimes occurring when the volume concentration of the dispersed phase varies. The closure of the mathematical model and some details of numerical model implementation are discussed. The shock-wave flow structure as well as the space-time dependencies of particle concentration and other flow parameters are presented.

Author(s):  
Д.В. Садин ◽  
И.О. Голиков ◽  
В.А. Давидчук

Исследуются задачи взаимодействия ударной волны с ограниченным слоем газовзвеси, внутри которого имеется неоднородность квадратного сечения пониженной или повышенной плотности. Для расчетов используется гибридный метод крупных частиц второго порядка аппроксимации по пространству и времени. Правильность численных разрывных решений, в частности скачков пористости, подтверждается сравнением с асимптотически точными профилями плотности смеси. Приведены аналитические зависимости ослабления ударной волны слоем газовзвеси. Изучены ударно-волновые структуры в двумерных областях и влияние на них релаксационных процессов. The problems of shock wave interaction with a bounded layer of gas suspension is studied in the case when a square-section inhomogeneity of reduced or increased density is situated inside this layer. The hybrid large-particle method of the second-order approximation in space and time is used for calculations. The numerical correctness of discontinuous solutions, in particular jumps of porosity, is confirmed by comparison with the asymptotically exact profiles of the mixture density. Analytical dependences of shock wave attenuation by a gas suspension layer are given. Shock-wave structures in two-dimensional regions and the effect of relaxation processes on them are analyzed.


2001 ◽  
Vol IV.01.1 (0) ◽  
pp. 349-350
Author(s):  
Hiroshi MIKAMI ◽  
Takeyuki KANADA ◽  
Yoshitaka SAKAMURA ◽  
Tateyuki SUZUKI

2018 ◽  
Vol 49 (2) ◽  
pp. 105-118
Author(s):  
Volf Ya. Borovoy ◽  
Vladimir Evguenyevich Mosharov ◽  
Vladimir Nikolaevich Radchenko ◽  
Arkadii Sergeyevich Skuratov

2021 ◽  
Vol 11 (11) ◽  
pp. 4934
Author(s):  
Viola Rossano ◽  
Giuliano De Stefano

Computational fluid dynamics was employed to predict the early stages of the aerodynamic breakup of a cylindrical water column, due to the impact of a traveling plane shock wave. The unsteady Reynolds-averaged Navier–Stokes approach was used to simulate the mean turbulent flow in a virtual shock tube device. The compressible flow governing equations were solved by means of a finite volume-based numerical method, where the volume of fluid technique was employed to track the air–water interface on the fixed numerical mesh. The present computational modeling approach for industrial gas dynamics applications was verified by making a comparison with reference experimental and numerical results for the same flow configuration. The engineering analysis of the shock–column interaction was performed in the shear-stripping regime, where an acceptably accurate prediction of the interface deformation was achieved. Both column flattening and sheet shearing at the column equator were correctly reproduced, along with the water body drift.


2016 ◽  
Vol 54 (6) ◽  
pp. 905-906 ◽  
Author(s):  
O. A. Mirova ◽  
A. L. Kotel’nikov ◽  
V. V. Golub ◽  
T. V. Bazhenova

1988 ◽  
Vol 23 (5) ◽  
pp. 795-797
Author(s):  
M. D. Gerasimov ◽  
A. V. Panasenko ◽  
V. F. Yatsuk

Sign in / Sign up

Export Citation Format

Share Document