scholarly journals Neural network model for multimodal recognition of human aggression

Author(s):  
М.Ю. Уздяев

Увеличение количества пользователей социокиберфизических систем, умных пространств, систем интернета вещей актуализирует проблему выявления деструктивных действий пользователей, таких как агрессия. При этом, деструктивные действия пользователей могут быть представлены в различных модальностях: двигательная активность тела, сопутствующее выражение лица, невербальное речевое поведение, вербальное речевое поведение. В статье рассматривается нейросетевая модель многомодального распознавания человеческой агрессии, основанная на построении промежуточного признакового пространства, инвариантного виду обрабатываемой модальности. Предлагаемая модель позволяет распознавать с высокой точностью агрессию в условиях отсутствия или недостатка информации какой-либо модальности. Экспериментальное исследование показало 81:8% верных распознаваний на наборе данных IEMOCAP. Также приводятся результаты экспериментов распознавания агрессии на наборе данных IEMOCAP для 15 различных сочетаний обозначенных выше модальностей. Growing user base of socio-cyberphysical systems, smart environments, IoT (Internet of Things) systems actualizes the problem of revealing of destructive user actions, such as various acts of aggression. Thereby destructive user actions can be represented in different modalities: locomotion, facial expression, associated with it, non-verbal speech behavior, verbal speech behavior. This paper considers a neural network model of multi-modal recognition of human aggression, based on the establishment of an intermediate feature space, invariant to the actual modality, being processed. The proposed model ensures high-fidelity aggression recognition in the cases when data on certain modality are scarce or lacking. Experimental research showed 81.8% correct recognition instances on the IEMOCAP dataset. Also, experimental results are given concerning aggression recognition on the IEMOCAP dataset for 15 different combinations of the modalities, outlined above.

Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 273
Author(s):  
Ioannis E. Livieris ◽  
Spiros D. Dafnis ◽  
George K. Papadopoulos ◽  
Dionissios P. Kalivas

Cotton constitutes a significant commercial crop and a widely traded commodity around the world. The accurate prediction of its yield quantity could lead to high economic benefits for farmers as well as for the rural national economy. In this research, we propose a multiple-input neural network model for the prediction of cotton’s production. The proposed model utilizes as inputs three different kinds of data (soil data, cultivation management data, and yield management data) which are treated and handled independently. The significant advantages of the selected architecture are that it is able to efficiently exploit mixed data, which usually requires being processed separately, reduces overfitting, and provides more flexibility and adaptivity for low computational cost compared to a classical fully-connected neural network. An empirical study was performed utilizing data from three consecutive years from cotton farms in Central Greece (Thessaly) in which the prediction performance of the proposed model was evaluated against that of traditional neural network-based and state-of-the-art models. The numerical experiments revealed the superiority of the proposed approach.


2018 ◽  
Vol 8 (9) ◽  
pp. 1648 ◽  
Author(s):  
Hyo-Jong Kim ◽  
Muhammad Mahmood ◽  
Tae-Sun Choi

In this paper, we suggest an efficient neural network model for shape from focus along with weight passing (WP) method. The neural network model is simplified by reducing the input data dimensions and eliminating the redundancies in the conventional model. It helps for decreasing computational complexity without compromising on accuracy. In order to increase the convergence rate and efficiency, WP method is suggested. It selects appropriate initial weights for the first pixel randomly from the neighborhood of the reference depth and it chooses the initial weights for the next pixel by passing the updated weights from the present pixel. WP method not only expedites the convergence rate, but also is effective in avoiding the local minimization problem. Moreover, this proposed method may also be applied to neural networks with diverse configurations for better depth maps. The proposed system is evaluated using image sequences of synthetic and real objects. Experimental results demonstrate that the proposed model is considerably efficient and is able to improve the convergence rate significantly while the accuracy is comparable with the existing systems.


Author(s):  
Luis F. de Mingo ◽  
Nuria Gómez ◽  
Fernando Arroyo ◽  
Juan Castellanos

This article presents a neural network model that permits to build a conceptual hierarchy to approximate functions over a given interval. Bio-inspired axo-axonic connections are used. In these connections the signal weight between two neurons is computed by the output of other neuron. Such arquitecture can generate polynomial expressions with lineal activation functions. This network can approximate any pattern set with a polynomial equation. This neural system classifies an input pattern as an element belonging to a category that the system has, until an exhaustive classification is obtained. The proposed model is not a hierarchy of neural networks, it establishes relationships among all the different neural networks in order to propagate the activation. Each neural network is in charge of the input pattern recognition to any prototyped category, and also in charge of transmitting the activation to other neural networks to be able to continue with the approximation.


2014 ◽  
Vol 513-517 ◽  
pp. 431-434
Author(s):  
Ming Xia Feng ◽  
Ren Chen ◽  
Qiang Li

A Homotopic BI neural network model is developed by combining the homotopy theory and the BI neural network model, to improve the defects of the steepest gradient descent algorithm itself, such as low speed converging and liable to be trapped in local minimum. The end-point carbon content and temperature of molten steel in BOF smelting process is predicted by the proposed model and the original. Result shows that the precision of new model is improved significantly. The hit rates are increased by about 5% and 10%, and the forecasting residuals have decreased 16.31% and 8.67% than the conventional ones, respectively. Also, the calculation time of the new model is 10% shorter than BI model.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Jinying Kong ◽  
Yating Yang ◽  
Lei Wang ◽  
Xi Zhou ◽  
Tonghai Jiang ◽  
...  

In phrase-based machine translation (PBMT) systems, the reordering table and phrase table are very large and redundant. Unlike most previous works which aim to filter phrase table, this paper proposes a novel deep neural network model to prune reordering table. We cast the task as a deep learning problem where we jointly train two models: a generative model to implement rule embedding and a discriminative model to classify rules. The main contribution of this paper is that we optimize the reordering model in PBMT by filtering reordering table using a recursive autoencoder model. To evaluate the performance of the proposed model, we performed it on public corpus to measure its reordering ability. The experimental results show that our approach obtains high improvement in BLEU score with less scale of reordering table on two language pairs: English-Chinese (+0.28) and Uyghur-Chinese (+0.33) MT.


2016 ◽  
Vol 22 (7) ◽  
pp. 967-978 ◽  
Author(s):  
Vahidreza YOUSEFI ◽  
Siamak HAJI YAKHCHALI ◽  
Mostafa KHANZADI ◽  
Ehsan MEHRABANFAR ◽  
Jonas ŠAPARAUSKAS

Despite broad improvements in construction management, claims still are an inseparable part of many con-struction projects. Due to huge cases of claim in construction industry, this study argues that claim management is a significant factor in construction projects success. In this study, the most possible causes of these emerging claims are identified and statistically ranked by Probability-Impact Matrix. Subsequently, by classifying claims in different cases, the most important ones are ranked in order to achieve a better understanding of claim management in each project. In this regard, a new index is defined, being able to be applied in a variety of projects with different time and cost values, to calculate the amount of possible claims in each project along with related ratios with respect to the cost and time of each claim. This study introduces a new model to predict the frequency of claims in construction projects. By using the proposed model, the rate of possible claims in each project can be obtained. This model is validated by applying it into fitting case studies in Iran construction industry.


Author(s):  
Yongkang Yang ◽  
Qiaoyi Du ◽  
Chenlong Wang ◽  
Yu Bai

Effectively avoiding gas accident is vital to the security of mineral manufacture, and the coal mine gas accident is often caused by gas concentration overrun. The prediction accuracy of gas emission quantity in coal mine is the key to solve this problem. To maintain concentration of gas in a secure range,grey theory and neural network model increasingly diffusely used in forecasting gas emission quantity in coal mine critically. Nevertheless, the limitation of the grey neural network model is that researchers merely bonded the conventional neural network and grey theory. To enhance accuracy of prediction, a modified grey GM(1,1) and RBF neural network model is proposed combined amended grey GM(1,1) model and RBF neural network model. Then the proposed model was put into simulation experiment which is built based on Matlab software. Ultimately, conclusion of the simulation experiment verified that the modified grey GM(1,1) and RBF neural network model not only boosts the precision of prediction, but also restricts relative error in a minimum range. This showed that the modified grey GM(1,1) and RBF neural network model achieves effectiveness in precision of prediction much better than grey GM(1,1) model and RBF neural network model.


Author(s):  
KEON-MYUNG LEE ◽  
DONG-HOON KWANG ◽  
HYUNG LEEK WANG

It is relatively easy to create rough fuzzy rules for a target system. However, it is time-consuming and difficult to fine-tune them for improving their behavior. Meanwhile, in the process of fuzzy inference the defuzzification operation takes most of the inferencing time. In this paper, we propose a fuzzy neural network model which makes it possible to tune fuzzy rules by employing neural networks and reduces the burden of defuzzification operation. In addition, to show the applicability of the proposed model we perform an experiment and present its result.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950014 ◽  
Author(s):  
Oscar Reyes ◽  
Sebastián Ventura

Multi-target regression (MTR) comprises the prediction of multiple continuous target variables from a common set of input variables. There are two major challenges when addressing the MTR problem: the exploration of the inter-target dependencies and the modeling of complex input–output relationships. This paper proposes a neural network model that is able to simultaneously address these two challenges in a flexible way. A deep architecture well suited for learning multiple continuous outputs is designed, providing some flexibility to model the inter-target relationships by sharing network parameters as well as the possibility to exploit target-specific patterns by learning a set of nonshared parameters for each target. The effectiveness of the proposal is analyzed through an extensive experimental study on 18 datasets, demonstrating the benefits of using a shared representation that exploits the commonalities between target variables. According to the experimental results, the proposed model is competitive with respect to the state-of-the-art in MTR.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5668
Author(s):  
Yan-Cheng Hsu ◽  
Yung-Hui Li ◽  
Ching-Chun Chang ◽  
Latifa Nabila Harfiya

Due to the growing public awareness of cardiovascular disease (CVD), blood pressure (BP) estimation models have been developed based on physiological parameters extracted from both electrocardiograms (ECGs) and photoplethysmograms (PPGs). Still, in order to enhance the usability as well as reduce the sensor cost, researchers endeavor to establish a generalized BP estimation model using only PPG signals. In this paper, we propose a deep neural network model capable of extracting 32 features exclusively from PPG signals for BP estimation. The effectiveness and accuracy of our proposed model was evaluated by the root mean square error (RMSE), mean absolute error (MAE), the Association for the Advancement of Medical Instrumentation (AAMI) standard and the British Hypertension Society (BHS) standard. Experimental results showed that the RMSEs in systolic blood pressure (SBP) and diastolic blood pressure (DBP) are 4.643 mmHg and 3.307 mmHg, respectively, across 9000 subjects, with 80.63% of absolute errors among estimated SBP records lower than 5 mmHg and 90.19% of absolute errors among estimated DBP records lower than 5 mmHg. We demonstrated that our proposed model has remarkably high accuracy on the largest BP database found in the literature, which shows its effectiveness compared to some prior works.


Sign in / Sign up

Export Citation Format

Share Document