Molecular Mobility as a Polymer Selection Tool for Amorphous Solid Dispersions

Author(s):  
Pinal Mistry
2020 ◽  
Vol 02 (01) ◽  
pp. e55-e63
Author(s):  
Andrew Toye Ojo ◽  
Ping I. Lee

AbstractDynamic mechanical analysis (DMA) offers several advantages over prevailing methods in the characterization of amorphous solid dispersions (ASDs) typically used for improving the delivery of poorly water-soluble drugs. This method of analysis, though underutilized in the study of pharmaceutical systems, is particularly attuned to rheological investigations of thermal and mechanical properties of solids such as ASDs. Its ability to determine the viscoelastic properties of systems across a wide range of temperatures and shear conditions provides useful insight for the development and processing of ASDs. The response of materials to an imposed stress, captured by DMA, can help identify proper conditions for preparing homogenous extrudates of the polymer and active pharmaceutical ingredient through hot melt extrusion (HME). As HME continues to gain utility within the pharmaceutical industry, the ability to tailor process conditions will become increasingly important for the efficient design and production of ASD products for poorly water-soluble drugs. Furthermore, DMA can be used to probe molecular mobility and its link to physical stability of ASDs. Establishing the link between molecular mobility and crystallization kinetics is central to predicting the physical stability of ASDs. Therefore, increasing the understanding of material properties through DMA will enable the successful development of more stable amorphous drug products. This review summarizes current characterization tools for ASDs and discusses the potential of utilizing DMA as a robust alternative to traditional methods.


2021 ◽  
Vol 159 ◽  
pp. 105700
Author(s):  
Sergey A. Zolotov ◽  
Natalia B. Demina ◽  
Anna S. Zolotova ◽  
Natalia V. Shevlyagina ◽  
Grigorii A. Buzanov ◽  
...  

Author(s):  
Valentyn Mohylyuk ◽  
Thomas Pauly ◽  
Oleksandr Dobrovolnyi ◽  
Nathan Scott ◽  
David S. Jones ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Eun-Sol Ha ◽  
Du Hyung Choi ◽  
In-hwan Baek ◽  
Heejun Park ◽  
Min-Soo Kim

In this study, we designed amorphous solid dispersions based on Eudragit E/HCl (neutralized Eudragit E using hydrochloric acid) to maximize the dissolution of trans-resveratrol. Solid-state characterization of amorphous solid dispersions of trans-resveratrol was performed using powder X-ray diffraction, scanning electron microscopy, and particle size measurements. In addition, an in vitro dissolution study and an in vivo pharmacokinetic study in rats were carried out. Among the tested polymers, Eudragit E/HCl was the most effective solid dispersion for the solubilization of trans-resveratrol. Eudragit E/HCl significantly inhibited the precipitation of trans-resveratrol in a pH 1.2 dissolution medium in a dose-dependent manner. The amorphous Eudragit E/HCl solid dispersion at a trans-resveratrol/polymer ratio of 10/90 exhibited a high degree of supersaturation without trans-resveratrol precipitation for at least 48 h by the formation of Eudragit E/HCl micelles. In rats, the absolute oral bioavailability (F%) of trans-resveratrol from Eudragit E/HCl solid dispersion (10/90) was estimated to be 40%. Therefore, trans-resveratrol-loaded Eudragit E/HCl solid dispersions prepared by spray drying offer a promising formulation strategy with high oral bioavailability for developing high-quality health supplements, nutraceutical, and pharmaceutical products.


Sign in / Sign up

Export Citation Format

Share Document