Development of novel darunavir amorphous solid dispersions with mesoporous carriers

2021 ◽  
Vol 159 ◽  
pp. 105700
Author(s):  
Sergey A. Zolotov ◽  
Natalia B. Demina ◽  
Anna S. Zolotova ◽  
Natalia V. Shevlyagina ◽  
Grigorii A. Buzanov ◽  
...  
Author(s):  
Valentyn Mohylyuk ◽  
Thomas Pauly ◽  
Oleksandr Dobrovolnyi ◽  
Nathan Scott ◽  
David S. Jones ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Eun-Sol Ha ◽  
Du Hyung Choi ◽  
In-hwan Baek ◽  
Heejun Park ◽  
Min-Soo Kim

In this study, we designed amorphous solid dispersions based on Eudragit E/HCl (neutralized Eudragit E using hydrochloric acid) to maximize the dissolution of trans-resveratrol. Solid-state characterization of amorphous solid dispersions of trans-resveratrol was performed using powder X-ray diffraction, scanning electron microscopy, and particle size measurements. In addition, an in vitro dissolution study and an in vivo pharmacokinetic study in rats were carried out. Among the tested polymers, Eudragit E/HCl was the most effective solid dispersion for the solubilization of trans-resveratrol. Eudragit E/HCl significantly inhibited the precipitation of trans-resveratrol in a pH 1.2 dissolution medium in a dose-dependent manner. The amorphous Eudragit E/HCl solid dispersion at a trans-resveratrol/polymer ratio of 10/90 exhibited a high degree of supersaturation without trans-resveratrol precipitation for at least 48 h by the formation of Eudragit E/HCl micelles. In rats, the absolute oral bioavailability (F%) of trans-resveratrol from Eudragit E/HCl solid dispersion (10/90) was estimated to be 40%. Therefore, trans-resveratrol-loaded Eudragit E/HCl solid dispersions prepared by spray drying offer a promising formulation strategy with high oral bioavailability for developing high-quality health supplements, nutraceutical, and pharmaceutical products.


2018 ◽  
Vol 97 ◽  
pp. 870-879 ◽  
Author(s):  
Carlos Demócedes Luís de França Almeida Moreira ◽  
Jonas Gabriel de Oliveira Pinheiro ◽  
Walter Ferreira da Silva-Júnior ◽  
Euzébio Guimarães Barbosa ◽  
Zênia Maria Maciel Lavra ◽  
...  

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 101 ◽  
Author(s):  
Michael Brunsteiner ◽  
Johannes Khinast ◽  
Amrit Paudel

Amorphous solid dispersions are considered a promising formulation strategy for the oral delivery of poorly soluble drugs. The limiting factor for the applicability of this approach is the physical (in)stability of the amorphous phase in solid samples. Minimizing the risk of reduced shelf life for a new drug by establishing a suitable excipient/polymer-type from first principles would be desirable to accelerate formulation development. Here, we perform Molecular Dynamics simulations to determine properties of blends of eight different polymer–small molecule drug combinations for which stability data are available from a consistent set of literature data. We calculate thermodynamic factors (mixing energies) as well as mobilities (diffusion rates and roto-vibrational fluctuations). We find that either of the two factors, mobility and energetics, can determine the relative stability of the amorphous form for a given drug. Which factor is rate limiting depends on physico-chemical properties of the drug and the excipients/polymers. The methods outlined here can be readily employed for an in silico pre-screening of different excipients for a given drug to establish a qualitative ranking of the expected relative stabilities, thereby accelerating and streamlining formulation development.


Sign in / Sign up

Export Citation Format

Share Document