Conjugation of Hot-Melt Extrusion Technology with Fused Deposition Modeling 3D Printer to Continuously Print Controlled Release Tablets

Author(s):  
Jiaxiang Zhang
Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 77 ◽  
Author(s):  
Bhupendra Giri ◽  
Eon Song ◽  
Jaewook Kwon ◽  
Ju-Hyun Lee ◽  
Jun-Bom Park ◽  
...  

This work presents a novel approach for producing gastro-retentive floating tablets (GRFT) by coupling hot-melt extrusion (HME) and fused deposition three-dimensional printing (3DP). Filaments containing theophylline (THEO) within a hydroxypropyl cellulose (HPC) matrix were prepared using HME. 3DP tablets with different infill percentages and shell thickness were developed and evaluated to determine their drug content, floating behavior, dissolution, and physicochemical properties. The dissolution studies revealed a relationship between the infill percentage/shell thickness and the drug release behavior of the 3DP tablets. All the developed GRFTs possessed the ability to float for 10 h and exhibited zero-order release kinetics. The drug release could be described by the Peppas–Sahlin model, as a combination of Fickian diffusion and swelling mechanism. Drug crystallinity was found unaltered throughout the process. 3DP coupled with HME, could be an effective blueprint to produce controlled-release GRFTs, providing the advantage of simplicity and versatility compared to the conventional methods.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 52 ◽  
Author(s):  
Nagi Reddy Dumpa ◽  
Suresh Bandari ◽  
Michael A. Repka

This study was performed to develop novel core-shell gastroretentive floating pulsatile drug delivery systems using a hot-melt extrusion-paired fused deposition modeling (FDM) 3D printing and direct compression method. Hydroxypropyl cellulose (HPC) and ethyl cellulose (EC)-based filaments were fabricated using hot-melt extrusion technology and were utilized as feedstock material for printing shells in FDM 3D printing. The directly compressed theophylline tablet was used as the core. The tablet shell to form pulsatile floating dosage forms with different geometries (shell thickness: 0.8, 1.2, 1.6, and 2.0 mm; wall thickness: 0, 0.8, and 1.6 mm; and % infill density: 50, 75, and 100) were designed, printed, and evaluated. All core-shell tablets floated without any lag time and exhibited good floating behavior throughout the dissolution study. The lag time for the pulsatile release of the drug was 30 min to 6 h. The proportion of ethyl cellulose in the filament composition had a significant (p < 0.05) effect on the lag time. The formulation (2 mm shell thickness, 1.6 mm wall thickness, 100% infill density, 0.5% EC) with the desired lag time of 6 h was selected as an optimized formulation. Thus, FDM 3D printing is a potential technique for the development of complex customized drug delivery systems for personalized pharmacotherapy.


2021 ◽  
Vol 600 ◽  
pp. 120501
Author(s):  
Nagireddy Dumpa ◽  
Arun Butreddy ◽  
Honghe Wang ◽  
Neeraja Komanduri ◽  
Suresh Bandari ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Sanjeevani Deshkar ◽  
Mrunali Rathi ◽  
Shital Zambad ◽  
Krishnakant Gandhi

Abstract:: Hot melt extrusion (HME) is a continuous pharmaceutical manufacturing process that has been extensively inves-tigated for solubility improvement and taste masking of active pharmaceutical ingredients. Recently, it is being explored for its application in 3D printing. 3D printing of pharmaceuticals allows flexibility of dosage form design, customization of dosage form for personalized therapy and the possibility of complex designs with the inclusion of multiple actives in a sin-gle unit dosage form. Fused deposition modeling (FDM) is a 3D printing technique with a variety of applications in pharma-ceutical dosage form development. FDM process requires a polymer filament as the starting material that can be obtained by hot melt extrusion. Recent reports suggest enormous applications of a combination of hot melt extrusion and FDM technol-ogy in 3D printing of pharmaceuticals and need to be investigated further. This review in detail describes the HME process along with its application in 3D printing. The review also summarizes the published reports on the application of HME cou-pled with 3D printing technology in drug delivery.


2017 ◽  
Vol 519 (1-2) ◽  
pp. 186-197 ◽  
Author(s):  
Jiaxiang Zhang ◽  
Xin Feng ◽  
Hemlata Patil ◽  
Roshan V. Tiwari ◽  
Michael A. Repka

2014 ◽  
Vol 12 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Jun-Bom Park ◽  
Suneela Prodduturi ◽  
Joe Morott ◽  
Vijay I Kulkarni ◽  
Melissa R Jacob ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document