Hot Melt Extrusion and its Application in 3D Printing of Pharmaceuticals

2020 ◽  
Vol 17 ◽  
Author(s):  
Sanjeevani Deshkar ◽  
Mrunali Rathi ◽  
Shital Zambad ◽  
Krishnakant Gandhi

Abstract:: Hot melt extrusion (HME) is a continuous pharmaceutical manufacturing process that has been extensively inves-tigated for solubility improvement and taste masking of active pharmaceutical ingredients. Recently, it is being explored for its application in 3D printing. 3D printing of pharmaceuticals allows flexibility of dosage form design, customization of dosage form for personalized therapy and the possibility of complex designs with the inclusion of multiple actives in a sin-gle unit dosage form. Fused deposition modeling (FDM) is a 3D printing technique with a variety of applications in pharma-ceutical dosage form development. FDM process requires a polymer filament as the starting material that can be obtained by hot melt extrusion. Recent reports suggest enormous applications of a combination of hot melt extrusion and FDM technol-ogy in 3D printing of pharmaceuticals and need to be investigated further. This review in detail describes the HME process along with its application in 3D printing. The review also summarizes the published reports on the application of HME cou-pled with 3D printing technology in drug delivery.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 52 ◽  
Author(s):  
Nagi Reddy Dumpa ◽  
Suresh Bandari ◽  
Michael A. Repka

This study was performed to develop novel core-shell gastroretentive floating pulsatile drug delivery systems using a hot-melt extrusion-paired fused deposition modeling (FDM) 3D printing and direct compression method. Hydroxypropyl cellulose (HPC) and ethyl cellulose (EC)-based filaments were fabricated using hot-melt extrusion technology and were utilized as feedstock material for printing shells in FDM 3D printing. The directly compressed theophylline tablet was used as the core. The tablet shell to form pulsatile floating dosage forms with different geometries (shell thickness: 0.8, 1.2, 1.6, and 2.0 mm; wall thickness: 0, 0.8, and 1.6 mm; and % infill density: 50, 75, and 100) were designed, printed, and evaluated. All core-shell tablets floated without any lag time and exhibited good floating behavior throughout the dissolution study. The lag time for the pulsatile release of the drug was 30 min to 6 h. The proportion of ethyl cellulose in the filament composition had a significant (p < 0.05) effect on the lag time. The formulation (2 mm shell thickness, 1.6 mm wall thickness, 100% infill density, 0.5% EC) with the desired lag time of 6 h was selected as an optimized formulation. Thus, FDM 3D printing is a potential technique for the development of complex customized drug delivery systems for personalized pharmacotherapy.


2021 ◽  
Vol 600 ◽  
pp. 120501
Author(s):  
Nagireddy Dumpa ◽  
Arun Butreddy ◽  
Honghe Wang ◽  
Neeraja Komanduri ◽  
Suresh Bandari ◽  
...  

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 203 ◽  
Author(s):  
Deck Tan ◽  
Mohammed Maniruzzaman ◽  
Ali Nokhodchi

Three-dimensional printing, also known as additive manufacturing, is a fabrication process whereby a 3D object is created layer-by-layer by depositing a feedstock material such as thermoplastic polymer. The 3D printing technology has been widely used for rapid prototyping and its interest as a fabrication method has grown significantly across many disciplines. The most common 3D printing technology is called the Fused Deposition Modelling (FDM) which utilises thermoplastic filaments as a starting material, then extrudes the material in sequential layers above its melting temperature to create a 3D object. These filaments can be fabricated using the Hot-Melt Extrusion (HME) technology. The advantage of using HME to manufacture polymer filaments for FDM printing is that a homogenous solid dispersion of two or more pharmaceutical excipients i.e., polymers can be made and a thermostable drug can even be introduced in the filament composition, which is otherwise impractical with any other techniques. By introducing HME techniques for 3D printing filament development can improve the bioavailability and solubility of drugs as well as sustain the drug release for a prolonged period of time. The latter is of particular interest when medical implants are considered via 3D printing. In recent years, there has been increasing interest in implementing a continuous manufacturing method on pharmaceutical products development and manufacture, in order to ensure high quality and efficacy with less batch-to-batch variations of the pharmaceutical products. The HME and FDM technology can be combined into one integrated continuous processing platform. This article reviews the working principle of Hot Melt Extrusion and Fused Deposition Modelling, and how these two technologies can be combined for the use of advanced pharmaceutical applications.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 77 ◽  
Author(s):  
Bhupendra Giri ◽  
Eon Song ◽  
Jaewook Kwon ◽  
Ju-Hyun Lee ◽  
Jun-Bom Park ◽  
...  

This work presents a novel approach for producing gastro-retentive floating tablets (GRFT) by coupling hot-melt extrusion (HME) and fused deposition three-dimensional printing (3DP). Filaments containing theophylline (THEO) within a hydroxypropyl cellulose (HPC) matrix were prepared using HME. 3DP tablets with different infill percentages and shell thickness were developed and evaluated to determine their drug content, floating behavior, dissolution, and physicochemical properties. The dissolution studies revealed a relationship between the infill percentage/shell thickness and the drug release behavior of the 3DP tablets. All the developed GRFTs possessed the ability to float for 10 h and exhibited zero-order release kinetics. The drug release could be described by the Peppas–Sahlin model, as a combination of Fickian diffusion and swelling mechanism. Drug crystallinity was found unaltered throughout the process. 3DP coupled with HME, could be an effective blueprint to produce controlled-release GRFTs, providing the advantage of simplicity and versatility compared to the conventional methods.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Deck Khong Tan ◽  
Mohammed Maniruzzaman ◽  
Ali Nokhodchi

This study reports a thorough investigation combining hot-melt extrusion technology (HME) and a low-cost fused deposition modelling (FDM) 3D printer as a continuous fabrication process for a sustained release drug delivery system. The successful implementation of such an approach presented herein allows local hospitals to manufacture their own medical and pharmaceutical products on-site according to their patients’ needs. This will help save time from waiting for suitable products to be manufactured off-site or using traditional manufacturing processes. The filaments were produced by optimising various compositions of pharmaceutical-grade polymers, such as hydroxypropyl cellulose (HPC), Eudragit® (RL PO), and polyethylene glycol (PEG), whereas theophylline was used as a model thermally stable drug. For the purpose of the study, twin-screw hot-melt extrusion (HME) was implemented from the view that it would result in the formation of solid dispersion of drug in the polymeric carrier matrices by means of high shear mixing inside the heated barrel. Four filament compositions consisting of different ratios of polymers were produced and their properties were assessed. The mechanical characterisation of the filaments revealed quite robust properties of the filaments suitable for FDM 3D printing of caplets (PrintCap), whereas the solid-state analyses conducted via DSC and XRD showed amorphous nature of the crystalline drug dispersed in the polymeric matrices. Moreover, the surface analysis conducted via SEM showed a smooth surface of the produced filaments as well as caplets where no drug crystals were visible. The in vitro drug release study showed a sustained release profile over 10 h where about 80% of the drug was released from the printed dosage forms. This indicates that our optimised 3D printed caplets could be suitable for the development of sustained release on-demand drug delivery systems.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1424
Author(s):  
Juliana dos Santos ◽  
Guilherme Silveira da Silva ◽  
Maiara Callegaro Velho ◽  
Ruy Carlos Ruver Beck

Eudragit® polymers are polymethacrylates highly used in pharmaceutics for the development of modified drug delivery systems. They are widely known due to their versatility with regards to chemical composition, solubility, and swelling properties. Moreover, Eudragit polymers are thermoplastic, and their use has been boosted in some production processes, such as hot melt extrusion (HME) and fused deposition modelling 3D printing, among other 3D printing techniques. Therefore, this review covers the studies using Eudragit polymers in the development of drug delivery systems produced by HME and 3D printing techniques over the last 10 years. Eudragit E has been the most used among them, mostly to formulate immediate release systems or as a taste-masker agent. On the other hand, Eudragit RS and Eudragit L100-55 have mainly been used to produce controlled and delayed release systems, respectively. The use of Eudragit polymers in these processes has frequently been devoted to producing solid dispersions and/or to prepare filaments to be 3D printed in different dosage forms. In this review, we highlight the countless possibilities offered by Eudragit polymers in HME and 3D printing, whether alone or in blends, discussing their prominence in the development of innovative modified drug release systems.


Sign in / Sign up

Export Citation Format

Share Document