Molecular Basis of Inter-Individual Variability in CYP2D6-Mediated Drug Metabolism

Author(s):  
Miaoran Ning
1992 ◽  
Vol 5 (6) ◽  
pp. 337-361 ◽  
Author(s):  
Robert J. Straka ◽  
Peter S. Marshall

Inter-individual variability in the response to numerous drugs can be traced to a number of sources. One source of variability in drug response is the variability associated with the metabolic capacity of an individual. The component of metabolic capacity that will be the focus of this article is that determined by heredity. Pharmacogenetics is frequently referred to as the study of the effects of heredity on the disposition and response to medications. This article will review the pharmacokinetic and pharmacodynamic significance of pharmacogenetics as it pertains to a select number of cardiovascular agents. The enzyme systems responsible for drug metabolism discussed in this article will be limited to the P-450IID6 and N-acetylation pathways. Given the extensive use of cardiovascular agents in clinical practice that are affected by this genetic polymorphism, it is important for the practicing pharmacist to be aware of this phenomenon and its implications. Hopefully, the knowledge gained from this article will help practicing pharmacists to appreciate the clinical significance of polymorphic drug metabolism and provide a basis for the application of this knowledge to a variety of practice settings.


2014 ◽  
Vol 91 (2) ◽  
pp. 242-248 ◽  
Author(s):  
Yasuhiro Uno ◽  
Akinori Matsushita ◽  
Mitsunori Shukuya ◽  
Yasuka Matsumoto ◽  
Norie Murayama ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1509
Author(s):  
Laura M. de Jong ◽  
Wim Jiskoot ◽  
Jesse J. Swen ◽  
Martijn L. Manson

Personalized medicine strives to optimize drug treatment for the individual patient by taking into account both genetic and non-genetic factors for drug response. Inflammation is one of the non-genetic factors that has been shown to greatly affect the metabolism of drugs—primarily through inhibition of cytochrome P450 (CYP450) drug-metabolizing enzymes—and hence contribute to the mismatch between the genotype predicted drug response and the actual phenotype, a phenomenon called phenoconversion. This review focuses on inflammation-induced drug metabolism alterations. In particular, we discuss the evidence assembled through human in-vitro models on the effect of inflammatory mediators on clinically relevant CYP450 isoform levels and their metabolizing capacity. We also present an overview of the current understanding of the mechanistic pathways via which inflammation in hepatocytes may modulate hepatic functions that are critical for drug metabolism. Furthermore, since large inter-individual variability in response to inflammation is observed in human in-vitro models and clinical studies, we evaluate the potential role of pharmacogenetic variability in the inflammatory signaling cascade and how this can modulate the outcome of inflammation on drug metabolism and response.


2019 ◽  
Vol 42 ◽  
Author(s):  
Emily F. Wissel ◽  
Leigh K. Smith

Abstract The target article suggests inter-individual variability is a weakness of microbiota-gut-brain (MGB) research, but we discuss why it is actually a strength. We comment on how accounting for individual differences can help researchers systematically understand the observed variance in microbiota composition, interpret null findings, and potentially improve the efficacy of therapeutic treatments in future clinical microbiome research.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
Darcy B. Kelley ◽  
Martha L. Tobias ◽  
Mark Ellisman

Brain and muscle are sexually differentiated tissues in which masculinization is controlled by the secretion of androgens from the testes. Sensitivity to androgen is conferred by the expression of an intracellular protein, the androgen receptor. A central problem of sexual differentiation is thus to understand the cellular and molecular basis of androgen action. We do not understand how hormone occupancy of a receptor translates into an alteration in the developmental program of the target cell. Our studies on sexual differentiation of brain and muscle in Xenopus laevis are designed to explore the molecular basis of androgen induced sexual differentiation by examining how this hormone controls the masculinization of brain and muscle targets.Our approach to this problem has focused on a highly androgen sensitive, sexually dimorphic neuromuscular system: laryngeal muscles and motor neurons of the clawed frog, Xenopus laevis. We have been studying sex differences at a synapse, the laryngeal neuromuscular junction, which mediates sexually dimorphic vocal behavior in Xenopus laevis frogs.


1998 ◽  
Vol 33 ◽  
pp. 65-77 ◽  
Author(s):  
Dominique Massotte ◽  
Brigitte L. Kieffer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document