Alterations in tissue and blood capillary wall in relation to changes in peritoneal transport characteristics in CAPD patients with ultrafiltration failure

Author(s):  
Joanna Stachowska-Pietka
2018 ◽  
Vol 34 (5) ◽  
pp. 864-870 ◽  
Author(s):  
Joanna Stachowska-Pietka ◽  
Jan Poleszczuk ◽  
Michael F Flessner ◽  
Bengt Lindholm ◽  
Jacek Waniewski

AbstractBackgroundUltrafiltration failure (UFF) in peritoneal dialysis (PD) patients is due to altered peritoneal transport properties leading to reduced capacity to remove excess water. Here, with the aim to establish the role of local alterations of the two major transport barriers, peritoneal tissue and capillary wall, we investigate changes in overall peritoneal transport characteristics in UFF patients in relation to corresponding local alterations of peritoneal tissue and capillary wall transport properties.MethodsSix-hour dwell studies using 3.86% glucose solutions and radioisotopically labelled serum albumin added to dialysate as a volume marker were analysed in 31 continuous ambulatory PD patients, 20 with normal ultrafiltration (NUF) and 11 with UFF. For each patient, the physiologically based parameters were evaluated for both transport barriers using the spatially distributed approach based on the individual intraperitoneal profiles of volume and concentrations of glucose, sodium, urea and creatinine.ResultsUFF patients as compared with NUF patients had increased solute diffusivity in both barriers, peritoneal tissue and capillary wall, decreased tissue hydraulic conductivity and increased local lymphatic absorption and functional decrease in the fraction of the ultra-small pores. This resulted in altered distribution of fluid and solutes in the peritoneal tissue, and decreased penetration depths of fluid and solutes into the tissue in UFF patients.ConclusionsMathematical modelling using a spatially distributed approach for the description of clinical data suggests that alterations both in the capillary wall and in the tissue barrier contribute to UFF through their effect on transport and distribution of solutes and fluid within the tissue.


2007 ◽  
Vol 27 (4) ◽  
pp. 446-453 ◽  
Author(s):  
Inna Kolesnyk ◽  
Friedo W. Dekker ◽  
Marlies Noordzij ◽  
Saskia le Cessie ◽  
Dirk G. Struijk ◽  
...  

Background Long-term peritoneal dialysis (PD) may lead to peritoneal fibrosis and ultrafiltration failure. The latter occurs due to high solute transport rates and diabetiform peritoneal sclerosis. Angiotensin-II (AII) is known to be a growth factor in the development of fibrosis and a number of animal studies have shown it likely that inhibiting the effects of AII by angiotensin-converting enzyme (ACE) or angiotensin receptor blocker (ARB) will attenuate these complications. Objective To investigate the effects of ACE/AII inhibitors in long-term PD patients. Patients and Setting We analyzed data from 66 patients treated with PD therapy at our center for at least 2 years, during which time at least 2 standard peritoneal permeability analyses (SPAs) were performed. 36 patients were treated with ACE/AII inhibitors (ACE/ARB group); the other 30 received none of the above drugs during the entire follow-up (control group). The two groups were compared with respect to changes in peritoneal transport over the follow-up time. Results A significant difference in time course of peritoneal transport was found between the 2 groups: in the ACE/ARB group, small solute transport had decreased, while it had increased in the control group. This finding was confirmed by analysis using mixed model for repeated measures. The value of mass transfer area coefficient of creatinine was influenced by the duration of PD therapy ( p = 0.017) and this interaction was different with respect to use of ACE/AII inhibitors ( p = 0.037). The trend was not found in protein clearances or fluid kinetics. Conclusion Our findings suggest that ACE/AII inhibition is likely to prevent the increase in mass transfer area coefficients that occurs in long-term PD, which is in line with results of experimental animal studies.


1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S95-S111 ◽  
Author(s):  
Niels A. Lassen ◽  
Ole Andrée Larsen

ABSTRACT Indicators which freely cross the capillary wall can be used for measurement of tissue blood flow in many different ways. Basically one can distinguish two categories of methods, viz. the ones where the indicator enters the tissue via the inflowing blood and the ones where the indicator is deposited locally in the tissue. The most important methods are briefly described with special emphasis on the theory of blood flow measurement.


Author(s):  
Amin Al-Doaiss ◽  
Yazun Jarrar ◽  
Ali Shati ◽  
Mohammad Alfaifi ◽  
Mohammed Al-Kahtani ◽  
...  

Background: Atorvastatin (ATOR) is widely used for the treatment and prevention of hypercholesterolemia and various diseases, such as cardiovascular complication, with little data about the histopathological and ultrastructural renal alterations that might be induced by this drug. Objectives: The present study was undertaken to investigate the potential toxicity of therapeutic doses of atorvastatin on the microanatomy and ultrastructure of renal tissues from Wistar albino rats. Methods: Adult male Wistar albino rats received an oral daily dose of 5 mg/kg body weight for 90 consecutive days. Biopsies from both kidneys of each study rat were taken for histopathological and ultrastructural examination. Results: ATOR-treated rats exhibited glomerular, tubular, and interstitial histological alterations, including degeneration, necrosis, hyaline droplets, edema, cortical hemorrhages, mesangial hypercellularity, and blood capillary dilation and congestion. In addition, ATOR exposure increased the activity of glucose-6-phosphate dehydrogenase and alkaline phosphatase with a concurrent reduction in proteins and neutral mucosubstances content of the glomeruli and renal cells. Moreover, ATOR-treated animals demonstrated glomerular ultrastructural alterations, consisting mainly of capillary tuft dilatation, glomerular basement membrane thickening, and mesangial cell proliferation. The renal cells of the proximal tubules demonstrated damaged mitochondria, degenerative cellular changes, endoplasmic reticulum dilatation, lysosomal and autophagosome activation, nuclear alteration, myelin figure formation, and microvilli disorganization. Conclusion: The findings of the present work may indicate that ATOR can induce renal histological, histochemical, and ultrastructural alterations that may affect kidney and other vital organ function.


1998 ◽  
Vol 18 (2) ◽  
pp. 188-192 ◽  
Author(s):  
Andrzej Breborowicz ◽  
Katarzyna Wieczorowska Tobis ◽  
Katarzyna Korybalska ◽  
Alicja Polubinska ◽  
Maciej Radkowski ◽  
...  

Objective To assess the effect of an inhibitor of nitric oxide synthesis [NG-nitro-L-arginine methyl ester (L-NAME)] on peritoneal transport during peritoneal dialysis (PD) and peritonitis in rats. Methods The authors studied peritoneal transport of small and large solutes, and net ultrafiltration (UF) in rats during PD with Dianeal 3.86 (Baxter, McGaw Park, IL, U.S.A.). They evaluated the effect of L-NAME used as an additive to dialysis fluid in concentrations 0.5 -5 mg/m L on peritoneal transport of small and large molecules and on transperitoneal UF. In addition, they studied the effect of L-NAME (5 mg/mL) during acute peritonitis induced by lipopolysaccharides (5 μg/mL) given intraperitoneally. Results The addition of L-NAME to dialysis fluid increased the selectivity of the peritoneum and net UF during dialysis. Lipopolysaccharides used as an additive to the dialysis fluid, together with L-NAME, did not induce changes in transperitoneal transport of small and large solutes and did not cause a significant decline in net UF. L-NAME given intraperitoneally reduced both local and systemic production of nitric oxide, which might explain its effects on peritoneal transport. Conclusions Nitric oxide is an important mediator of changes in peritoneal transport and its effect is especially significant during peritonitis.


Sign in / Sign up

Export Citation Format

Share Document