hydrophilic drugs
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 75)

H-INDEX

28
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 789
Author(s):  
Chiho Miyamaru ◽  
Mao Koide ◽  
Nana Kato ◽  
Shogo Matsubara ◽  
Masahiro Higuchi

We fabricated CaCO3-coated vesicles as drug carriers that release their cargo under a weakly acidic condition. We designed and synthesized a peptide lipid containing the Val-His-Val-Glu-Val-Ser sequence as the hydrophilic part, and with two palmitoyl groups at the N-terminal as the anchor groups of the lipid bilayer membrane. Vesicles embedded with the peptide lipids were prepared. The CaCO3 coating of the vesicle surface was performed by the mineralization induced by the embedded peptide lipid. The peptide lipid produced the mineral source, CO32−, for CaCO3 mineralization through the hydrolysis of urea. We investigated the structure of the obtained CaCO3-coated vesicles using transmission electron microscopy (TEM). The vesicles retained the spherical shapes, even in vacuo. Furthermore, the vesicles had inner spaces that acted as the drug cargo, as observed by the TEM tomographic analysis. The thickness of the CaCO3 shell was estimated as ca. 20 nm. CaCO3-coated vesicles containing hydrophobic or hydrophilic drugs were prepared, and the drug release properties were examined under various pH conditions. The mineralized CaCO3 shell of the vesicle surface was dissolved under a weakly acidic condition, pH 6.0, such as in the neighborhood of cancer tissues. The degradation of the CaCO3 shell induced an effective release of the drugs. Such behavior suggests potential of the CaCO3-coated vesicles as carriers for cancer therapies.


2022 ◽  
Author(s):  
Linlin Shi ◽  
Xinkai Wu ◽  
Tongyu Li ◽  
Yuan Wu ◽  
Liwei Song ◽  
...  

Liposomal nanomedicine represents a common and versatile carrier for the delivery of both lipophilic and hydrophilic drugs. However, the direct formulation of many chemotherapeutics into a liposomal system remains an...


2021 ◽  
Vol 28 ◽  
Author(s):  
Yogesh Garg ◽  
Deepak N Kapoor ◽  
Abhishek Kumar Sharma ◽  
Amit Bhatia

Abstract: The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.


Author(s):  
Supriya Nikam ◽  
Abhilasha Ghule ◽  
Akash Inde ◽  
Anjali Jambhulkar

The Ocular drug delivery system (ODDS) is the prominently challenging system faced by pharmaceutical researchers. Ophthalmic preparations are available in buffered, sterile and isotonic solutions. For the ocular delivery of drugs, various types of dosage forms are prepared and dispensed. As the drops are easier for the administration likewise more prescribed dosage form is the eye drop solution. For obtaining prolonged therapeutic effect ointment, suspensions and gelled systems are also used. The presence of various barriers as anatomical, physiological and physiochemical barriers makes difficulties in delivery of drugs in at the intended sites. Scientists invented alternate delivery routes to direct access at intended target sites. Second invention involves development of novel drug delivery systems providing better permeability, treatability and controlled release at target site. The liposomal delivery is beneficial because they have the ability of envelopment and both hydrophobic and hydrophilic drugs are suitable for delivery to both the anterior and posterior segment of the eye. Therefore, the uses of this alternative approach become quite a necessary. This formulation of novel devices will definitely help to the overcome ocular barriers and side effects with conventional topical drops. Current reviews on the conventional formulations of ocular delivery and their advancements followed by current nanotechnology based on the formulation developments. The recent incident with other ocular drug delivery planning consists of in situ gels, implants, contact lens and nano wafers are discussed. Drug delivery at ophthalmic route has been proven significant advancement for the future perspectives.


Author(s):  
Le Thi Duy Hanh

The aim of this work was to strengthen the evidence of using micro diatom frustule as a promising candidate for drug loading materials for both hydrophobic and hydrophilic drug models. The morphological, surface elemental composition of diatomite powder, a raw source of micro diatom frustules and purified diatomite to collect micro diatom frustule were investigated. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) confirmed again the porous silica structure of micro diatom structure as well as validated a necessity of raw diatomite purification before using. UV- vis was used to measure drug loading content of untreated and treated surface of micro diatom frustule with maximum loading for hydrophobic and hydrophilic drugs after 24 hours were at 5.48 ± 0.42% and 5.70 ± 0.34, respectively. Moreover, we also proved that the ability of drug adsorption on materials surface by the reduction of specific surface area and pore size of micro diatom frustule after loading using a (Brunauer–Emmett–Teller) BET method. Besides, the hydrophobic loading capacity of materials was affected by surface modification. Based on the results, micro diatom frustule showed a potential for a drug delivery system.


2021 ◽  
Vol 18 ◽  
Author(s):  
Tapan K Shaw ◽  
Paramita Paul

: Brain tumors are nothing but a collection of neoplasms originated either from areas within the brain or from systemic metastasized tumors of other organs that have spread to the brain. It is a leading cause of death worldwide. The presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), and some other factors may limit the entry of many potential therapeutics into the brain tissues in tumor area at the therapeutic concentration required for satisfying effectiveness. Liposomes are taking an active role in delivering many drugs through the BBB into the tumor due to their nanosize and their physiological compatibility. Further, this colloidal carrier can encapsulate both lipophilic and hydrophilic drugs due to its unique structure. The surface of the liposomes can be modified with various ligands that are very specific to the numerous receptors overexpressed onto the BBB as well as onto the diseased tumor surface site (i.e., BBTB) to deliver selective drugs into the tumor site. Moreover, the enhanced permeability and retention (EPR) effect can be an added advantage for nanosize liposomes to concentrate into the tumor microenvironment through relatively leaky vasculature of solid tumor in the brain where no restriction of penetration applies compared to normal BBB. Here in this review, we have tried to compilethe recent advancement along with the associated challenges of liposomes containing different anticancer chemotherapeutics across the BBB/BBTB for the treatment of gliomas that will be very helpful for the readers for better understanding of different trends of brain tumor targeted liposomes-based drug delivery and for pursuing fruitful research on the similar research domain.


Author(s):  
Jian Li ◽  
Shihe Liu ◽  
Yanting Gao ◽  
Zhen Li ◽  
Jiahui Cai ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4133
Author(s):  
Yoke Mooi Ng ◽  
Paolo Coghi ◽  
Jerome P. L. Ng ◽  
Fayaz Ali ◽  
Vincent Kam Wai Wong ◽  
...  

In this study, a full organic and water-soluble material was synthesized by coupling low molecular weight polyethylenimine (PEI-800) with cyclotriveratrilene (CTV). The water-soluble cross-linked polymer contains hydrophobic holes with a high coordination capability towards different organic drug molecules. The coordinating capability towards hydrophilic drugs (doxorubicin, gatifloxacin and sinomenine) and hydrophobic drugs (camptothecin and celastrol) was analyzed in an aqueous medium by using NMR, UV-Vis and emission spectroscopies. The coordination of drug molecules with the armed CTV unit through hydrophobic interactions was observed. In particular, celastrol exhibited more ionic interactions with the PEI moiety of the hosting system. In the case of doxorubicin, the host–guest detachment was induced by the addition of ammonium chloride, suggesting that the intracellular environment can facilitate the release of the drug molecules.


2021 ◽  
Vol 22 (23) ◽  
pp. 12662
Author(s):  
Sara La Manna ◽  
Concetta Di Natale ◽  
Valentina Onesto ◽  
Daniela Marasco

Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure’s stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1781
Author(s):  
Nicole Zoratto ◽  
Laura Forcina ◽  
Roberto Matassa ◽  
Luciana Mosca ◽  
Giuseppe Familiari ◽  
...  

The anatomy and physiology of the eye strongly limit the bioavailability of locally administered drugs. The entrapment of therapeutics into nanocarriers represents an effective strategy for the topical treatment of several ocular disorders, as they may protect the embedded molecules, enabling drug residence on the ocular surface and/or its penetration into different ocular compartments. The present work shows the activity of hyaluronan-cholesterol nanogels (NHs) as ocular permeation enhancers. Thanks to their bioadhesive properties, NHs firmly interact with the superficial corneal epithelium, without penetrating the stroma, thus modifying the transcorneal penetration of loaded therapeutics. Ex vivo transcorneal permeation experiments show that the permeation of hydrophilic drugs (i.e., tobramycin and diclofenac sodium salt), loaded in NHs, is significantly enhanced when compared to the free drug solutions. On the other side, the permeation of hydrophobic drugs (i.e., dexamethasone and piroxicam) is strongly dependent on the water solubility of the entrapped molecules. The obtained results suggest that NHs formulations can improve the ocular bioavailability of the instilled drugs by increasing their preocular retention time (hydrophobic drugs) or facilitating their permeation (hydrophilic drugs), thus opening the route for the application of HA-based NHs in the treatment of both anterior and posterior eye segment diseases.


Sign in / Sign up

Export Citation Format

Share Document