4 / In vitro combination of voriconazole with micafungin against azole-resistant clinical isolates of Aspergillus fumigatus from different geographical regions

Author(s):  
H. Fakhim
2019 ◽  
Vol 58 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Beatriz Bustamante ◽  
Luis Ricardo Illescas ◽  
Andrés Posadas ◽  
Pablo E Campos

Abstract Azole resistance among Aspergillus fumigatus isolates, which is mainly related to mutations in the cyp51A gene, is a concern because it is rising, worldwide disseminated, and associated with treatment failure and death. Data on azole resistance of aspergillus from Latin American countries is very scarce and do not exist for Peru. Two hundred and seven Aspergillus clinical isolates collected prospectively underwent mycology and molecular testing for specie identification, and 143 isolates were confirmed as A. fumigatus sensu stricto (AFSS). All AFSS were tested for in vitro azole susceptibility, and resistant isolates underwent PCR amplification and sequencing of the whole cyp51A gene and its promoter. The in vitro susceptibility showed a minimal inhibitory concentration (MIC) range, MIC50 and MIC90 of 0.125 to >16, 0.25, and 0.5 μg/ml for itraconazole; 0.25 to 2, 0.5, and 0.5 μg/ml for voriconazole; and 0.003 to 1, 0.06, and 0.125 μg/ml for posaconazole. Three isolates (2%) showed resistance to itraconazole and exhibited different mutations of the cyp51A gene. One isolate harbored the mutation M220K, while a second one exhibited the G54 mutation plus a modification in the cyp51A gene promoter. The third isolate, from an azole naive patient, presented an integration of a 34-bp tandem repeat (TR34) in the promoter region of the gene and a substitution of leucine 98 by histidine (L98H). The three source patients had a diagnosis or suspicion of chronic pulmonary aspergillosis.


2006 ◽  
Vol 5 (10) ◽  
pp. 1705-1712 ◽  
Author(s):  
S. Arunmozhi Balajee ◽  
David Nickle ◽  
Janos Varga ◽  
Kieren A. Marr

ABSTRACT Aspergillus fumigatus has been understood to be the most common cause of invasive aspergillosis (IA) in all epidemiological surveys. However, recent studies have uncovered a large degree of genetic heterogeneity between isolates morphologically identified as A. fumigatus, leading to the description of a new species, Aspergillus lentulus. Here, we examined the genetic diversity of clinical isolates identified as A. fumigatus using restriction enzyme polymorphism analysis and sequence-based identification. Analysis of 50 clinical isolates from geographically diverse locations recorded the presence of at least three distinct species: A. lentulus, Aspergillus udagawae, and A. fumigatus. In vitro, A. lentulus isolates demonstrated decreased susceptibility to antifungal drugs currently used for IA, including amphotericin B, voriconazole, and caspofungin; A. udagawae isolates demonstrated decreased in vitro susceptibility to amphotericin B. Results of the present study demonstrate that current phenotypic methods to identify fungi do not differentiate between genetically distinct species in the A. fumigatus group. Differential antifungal susceptibilities of these species may account for some of the reported poor outcomes of therapy in clinical studies.


1998 ◽  
Vol 42 (4) ◽  
pp. 531-533 ◽  
Author(s):  
M. Cuenca-Estrella ◽  
J. L. Rodriguez-Tudela ◽  
E. Mellado ◽  
J. V. Martinez-Suarez ◽  
A. Monzon

2014 ◽  
Vol 58 (7) ◽  
pp. 4222-4223 ◽  
Author(s):  
Jim Werngren ◽  
Maria Wijkander ◽  
Nasrin Perskvist ◽  
V. Balasubramanian ◽  
Vasan K. Sambandamurthy ◽  
...  

ABSTRACTThe MIC of the novel antituberculosis (anti-TB) drug AZD5847 was determined against 146 clinical isolates from diverse geographical regions, including eastern Europe, North America, Africa, and Asia, using the automated Bactec Mycobacterial Growth Indicator Tube (MGIT) 960 system. These isolates originated from specimen sources such as sputum, bronchial alveolar lavage fluid, pleural fluid, abscess material, lung biopsies, and feces. The overall MIC90was 1.0 mg/liter (range, 0.125 to 4 mg/liter). The MICs of AZD5847 for isolates ofMycobacterium tuberculosiswere similar among drug-sensitive strains, multidrug-resistant (MDR) strains, and extensively drug resistant (XDR) strains. The goodin vitroactivity of AZD5847 againstM. tuberculosisand the lack of cross-resistance make this agent a promising anti-TB drug candidate.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Caitlin H. Kowalski ◽  
Sarah R. Beattie ◽  
Kevin K. Fuller ◽  
Elizabeth A. McGurk ◽  
Yi-Wei Tang ◽  
...  

ABSTRACTPrevious work has shown that environmental and clinical isolates ofAspergillus fumigatusrepresent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence amongA. fumigatusisolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions of low oxygen promotes virulence ofA. fumigatusin this model. To test this hypothesis, we performedin vitrofitness andin vivovirulence analyses in the triamcinolone murine model of IPA with 14 environmental and clinical isolates ofA. fumigatus. Among these isolates, we observed a strong correlation between fitness in low oxygenin vitroand virulence. In further support of our hypothesis, experimental evolution of AF293, a strain that exhibits reduced fitness in low oxygen and reduced virulence in the triamcinolone model of IPA, results in a strain (EVOL20) that has increased hypoxia fitness and a corresponding increase in virulence. Thus, the ability to thrive in low oxygen correlates with virulence ofA. fumigatusisolates in the context of steroid-mediated murine immunosuppression.IMPORTANCEAspergillus fumigatusoccupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation betweenA. fumigatusisolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence ofA. fumigatus. We describe here the first observation of a model-specific virulence phenotype correlative within vitrofitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogenA. fumigatus.


2004 ◽  
Vol 48 (12) ◽  
pp. 4922-4925 ◽  
Author(s):  
William J. Steinbach ◽  
Nina Singh ◽  
Jackie L. Miller ◽  
Daniel K. Benjamin ◽  
Wiley A. Schell ◽  
...  

ABSTRACT We performed in vitro antifungal checkerboard testing on 12 Aspergillus fumigatus clinical isolates (6 transplant recipients and 6 nontransplant patients) with three antifungal agents (amphotericin B, voriconazole, and caspofungin) and three immunosuppressants (FK506, cyclosporine, and rapamycin). We were not able to detect a difference in calcineurin inhibitor antifungal activity against isolates from transplant recipients and nontransplant patients.


2008 ◽  
Vol 52 (10) ◽  
pp. 3504-3511 ◽  
Author(s):  
Maiken Cavling Arendrup ◽  
Susanne Perkhofer ◽  
Susan J. Howard ◽  
Guillermo Garcia-Effron ◽  
Aimanianda Vishukumar ◽  
...  

ABSTRACT Two clinical isolates of Aspergillus fumigatus, designated AT and DK, were recently obtained from patients failing caspofungin and itraconazole therapy, respectively. The isolates were tested by microdilution for susceptibility to itraconazole, voriconazole, posaconazole, ravuconazole, and caspofungin and by Etest for susceptibility to amphotericin B and caspofungin. Susceptibility testing documented that the DK isolate was azole resistant (itraconazole and posaconazole MICs, >4 μg/ml; voriconazole MIC, 2 μg/ml; ravuconazole MIC, 4 μg/ml), and the resistance was confirmed in a hematogenous mouse model, with mortality and the galactomannan index as the primary and secondary end points. Sequencing of the cyp51A gene revealed the M220K mutation, conferring multiazole resistance. The Etest, but not microdilution, suggested that the AT isolate was resistant to caspofungin (MIC, >32 μg/ml). In the animal model, this isolate showed reduced susceptibility to caspofungin. Sequencing of the FKS1 gene revealed no mutations; the enzyme retained full sensitivity in vitro; and investigation of the polysaccharide composition showed that the β-(1,3)-glucan proportion was unchanged. However, gene expression profiling by Northern blotting and real-time PCR demonstrated that the FKS gene was expressed at a higher level in the AT isolate than in the susceptible control isolate. To our knowledge, this is the first report to document the presence of multiazole-resistant clinical isolates in Denmark and to demonstrate reduced susceptibility to caspofungin in a clinical A. fumigatus isolate with increased expression of the FKS gene. Further research to determine the prevalence of resistance in A. fumigatus worldwide, and to develop easier and reliable tools for the identification of such isolates in routine laboratories, is warranted.


1996 ◽  
Vol 42 (9) ◽  
pp. 960-964 ◽  
Author(s):  
Elias K. Manavathu ◽  
George J. Alangaden ◽  
Stephen A. Lerner

The effects of inoculum size, medium, temperature, and duration of growth on the in vitro susceptibility testing of Aspergillus fumigatus were investigated using broth micro- and macro-dilution techniques. The minimum inhibitory concentrations (MICs) of ketoconazole, miconazole, itraconazole, fluconazole, and amphotericin B were significantly influenced by the inoculum size, regardless of the techniques used. Two- to four-fold higher MIC values were obtained when the inoculum size was increased 100-fold. The use of peptone yeast extract glucose and RPMI 1640 media provided essentially identical MIC values at 30 and 35 °C after incubation for 48 h or longer. A comparison of broth micro- and macro-dilution techniques revealed that, under equivalent conditions, the latter with an inoculum size between 1 × 103and 1 × 104conidia (strain W73355)/mL consistently provided the lowest MICs of fluconazole (256 μg/mL), ketoconazole (8 μg/mL), miconazole (2 μg/mL), itraconazole (0.25 μg/mL), and amphotericin B (0.25 μg/mL). Using the broth macrodilution technique, we screened 24 clinical isolates of A. fumigatus obtained from the Detroit Medical Center in 1994. The MIC values of fluconazole, ketoconazole, miconazole, itraconazole and amphotericin B for all the isolates were 128–256, 8–16, 1–2, 0.25–0.5, and 0.25–1.0 μg/mL, respectively, indicating that none of the clinical isolates that we tested shows acquired resistance to the antifungals used.Key words: Aspergillus fumigatus, susceptibility test, antifungals, drug resistance, broth macrodilution.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Benjamin P. Knox ◽  
Adriana Blachowicz ◽  
Jonathan M. Palmer ◽  
Jillian Romsdahl ◽  
Anna Huttenlocher ◽  
...  

ABSTRACT As durations of manned space missions increase, it is imperative to understand the long-term consequence of microbial exposure on human health in a closed human habitat. To date, studies aimed at bacterial and fungal contamination of space vessels have highlighted species compositions biased toward hardy, persistent organisms capable of withstanding harsh conditions. In the current study, we assessed traits of two independent Aspergillus fumigatus strains isolated from the International Space Station. Ubiquitously found in terrestrial soil and atmospheric environments, A. fumigatus is a significant opportunistic fungal threat to human health, particularly among the immunocompromised. Using two well-known clinical isolates of A. fumigatus as comparators, we found that both ISS isolates exhibited normal in vitro growth and chemical stress tolerance yet caused higher lethality in a vertebrate model of invasive disease. These findings substantiate the need for additional studies of physical traits and biological activities of microbes adapted to microgravity and other extreme extraterrestrial conditions. One mission of the Microbial Observatory Experiments on the International Space Station (ISS) is to examine the traits and diversity of fungal isolates to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in a closed habitat. Here, we report an initial characterization of two isolates, ISSFT-021 and IF1SW-F4, of Aspergillus fumigatus collected from the ISS and a comparison to the experimentally established clinical isolates Af293 and CEA10. Whole-genome sequencing of ISSFT-021 and IF1SW-F4 showed 54,960 and 52,129 single nucleotide polymorphisms, respectively, compared to Af293, which is consistent with observed genetic heterogeneity among sequenced A. fumigatus isolates from diverse clinical and environmental sources. Assessment of in vitro growth characteristics, secondary metabolite production, and susceptibility to chemical stresses revealed no outstanding differences between ISS and clinical strains that would suggest special adaptation to life aboard the ISS. Virulence assessment in a neutrophil-deficient larval zebrafish model of invasive aspergillosis revealed that both ISSFT-021 and IF1SW-F4 were significantly more lethal than Af293 and CEA10. Taken together, these genomic, in vitro, and in vivo analyses of two A. fumigatus strains isolated from the ISS provide a benchmark for future investigations of these strains and for continuing research on specific microbial isolates from manned space environments. IMPORTANCE As durations of manned space missions increase, it is imperative to understand the long-term consequence of microbial exposure on human health in a closed human habitat. To date, studies aimed at bacterial and fungal contamination of space vessels have highlighted species compositions biased toward hardy, persistent organisms capable of withstanding harsh conditions. In the current study, we assessed traits of two independent Aspergillus fumigatus strains isolated from the International Space Station. Ubiquitously found in terrestrial soil and atmospheric environments, A. fumigatus is a significant opportunistic fungal threat to human health, particularly among the immunocompromised. Using two well-known clinical isolates of A. fumigatus as comparators, we found that both ISS isolates exhibited normal in vitro growth and chemical stress tolerance yet caused higher lethality in a vertebrate model of invasive disease. These findings substantiate the need for additional studies of physical traits and biological activities of microbes adapted to microgravity and other extreme extraterrestrial conditions.


Sign in / Sign up

Export Citation Format

Share Document