scholarly journals Establishing In Vitro-In Vivo Correlations for Aspergillus fumigatus: the Challenge of Azoles versus Echinocandins

2008 ◽  
Vol 52 (10) ◽  
pp. 3504-3511 ◽  
Author(s):  
Maiken Cavling Arendrup ◽  
Susanne Perkhofer ◽  
Susan J. Howard ◽  
Guillermo Garcia-Effron ◽  
Aimanianda Vishukumar ◽  
...  

ABSTRACT Two clinical isolates of Aspergillus fumigatus, designated AT and DK, were recently obtained from patients failing caspofungin and itraconazole therapy, respectively. The isolates were tested by microdilution for susceptibility to itraconazole, voriconazole, posaconazole, ravuconazole, and caspofungin and by Etest for susceptibility to amphotericin B and caspofungin. Susceptibility testing documented that the DK isolate was azole resistant (itraconazole and posaconazole MICs, >4 μg/ml; voriconazole MIC, 2 μg/ml; ravuconazole MIC, 4 μg/ml), and the resistance was confirmed in a hematogenous mouse model, with mortality and the galactomannan index as the primary and secondary end points. Sequencing of the cyp51A gene revealed the M220K mutation, conferring multiazole resistance. The Etest, but not microdilution, suggested that the AT isolate was resistant to caspofungin (MIC, >32 μg/ml). In the animal model, this isolate showed reduced susceptibility to caspofungin. Sequencing of the FKS1 gene revealed no mutations; the enzyme retained full sensitivity in vitro; and investigation of the polysaccharide composition showed that the β-(1,3)-glucan proportion was unchanged. However, gene expression profiling by Northern blotting and real-time PCR demonstrated that the FKS gene was expressed at a higher level in the AT isolate than in the susceptible control isolate. To our knowledge, this is the first report to document the presence of multiazole-resistant clinical isolates in Denmark and to demonstrate reduced susceptibility to caspofungin in a clinical A. fumigatus isolate with increased expression of the FKS gene. Further research to determine the prevalence of resistance in A. fumigatus worldwide, and to develop easier and reliable tools for the identification of such isolates in routine laboratories, is warranted.

Real-time PCR offers a wide area of application to analyze the role of gene activity in various biological aspects at the molecular level with higher specificity, sensitivity and the potential to troubleshoot with post-PCR processing and difficulties. With the recent advancement in the development of functional tissue graft for the regeneration of damaged/diseased tissue, it is effective to analyze the cell behaviour and differentiation over tissue construct toward specific lineage through analyzing the expression of an array of specific genes. With the ability to collect data in the exponential phase, the application of Real-Time PCR has been expanded into various fields such as tissue engineering ranging from absolute quantification of gene expression to determine neo-tissue regeneration and its maturation. In addition to its usage as a research tool, numerous advancements in molecular diagnostics have been achieved, including microbial quantification, determination of gene dose and cancer research. Also, in order to consistently quantify mRNA levels, Northern blotting and in situ hybridization (ISH) methods are less preferred due to low sensitivity, poor precision in detecting gene expression at a low level. An amplification step is thus frequently required to quantify mRNA amounts from engineered tissues of limited size. When analyzing tissue-engineered constructs or studying biomaterials–cells interactions, it is pertinent to quantify the performance of such constructs in terms of extracellular matrix formation while in vitro and in vivo examination, provide clues regarding the performance of various tissue constructs at the molecular level. In this chapter, our focus is on Basics of qPCR, an overview of technical aspects of Real-time PCR; recent Protocol used in the lab, primer designing, detection methods and troubleshooting of the experimental problems.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 356-356 ◽  
Author(s):  
Yair Herishanu ◽  
Berengere Vire ◽  
Delong Liu ◽  
Federica Gibellini ◽  
Gerald E Marti ◽  
...  

Abstract The host microenvironment is important for proliferation and survival of leukemic cells in chronic lymphocytic leukemia (CLL). Numerous molecules, signaling pathways and cell types have been reported to enhance CLL cell survival. To date, most reports on such interactions are derived from in-vitro studies, where each study focused on a specific ligand/receptor interaction or candidate pathway. Here, we adopted a more global approach to evaluate in-vivo effects of the microenvironment on leukemic cell biology. CLL cells from 15 patients were obtained on the same day from 3 different compartments: peripheral blood (PB), bone marrow (BM) and lymph node (LN), from which a single cell suspension was prepared. Tumor cells from all three compartments were purified by CD19 selection to purity >98%. Patients were assigned to prognostic subtypes based on immunoglobulin sequencing (Ig) and ZAP70 expression: 10 patients had the more progressive subtype (Ig-unmutated, ZAP70+) and 5 patients belonged to the more indolent subtype. Cells were analyzed for surface markers by flow cytometry and by gene expression profiling on Affymetrix HG U133 Plus 2.0 arrays. By flow cytometry, CLL cells in LN expressed higher levels of activation markers including CD69 and CD38 compared to CLL cells in PB (% CD19+/69+; 71 ±27 vs. 35 ±28, p<0.001 and % CD19+/CD38+; 33 ±28 vs. 20±19, p<0.001, respectively). The expression of activation markers in BM derived cells was less consistent and did not reach statistically significant differences. We therefore focused our analysis on a comparison between LN and PB derived cells. First, we confirmed that the expression of a diagnostic CLL gene expression signature established previously for PB derived cells (Klein et al, 2001) was equally present in leukemic cells derived from all three compartments. We then identified a set of about 275 genes that were differentially expressed between LN resident and circulating tumor cells, most of which were up-regulated (fold change >2, FDR <0.2). A large number of these genes encode proteins important for cell cycle control and proliferation: different cyclins, PCNA, Ki67, TOP2A and MYC. We also detected a significant increase in the expression of NF-κB target genes in LN resident tumor cells, including CD83, CD69, JunB, Cyclin D2, GADD45B, CCL3, CCL4 and others. Consistent with activation of the NF-κB pathway in LN, IκB-beta protein levels in tumor cells from LN were lower than levels in matching PB cells. Next we identified genes differentially expressed between CLL subtypes based on Ig-mutation status separately for each of the 3 compartments. Interestingly, these subtype identifying gene sets were only partially overlapping. In Ig-unmutated, ZAP70+ cells several genes were more strongly regulated by the microenvironment then in Ig-mutated, ZAP70 negative cells. Among these genes is LPL, which has been reported to distinguish the CLL subtypes, and other genes induced by B-cell receptor (BCR) signaling. Using in-vitro IgM activation, we show that these genes are indeed induced by BCR stimulation but not by CD40 ligation and that their induction is confined to ZAP70+ CLL cells. In conclusion: interactions between CLL cells and elements of the microenvironment in LN induce cell proliferation and NF-κB activation. The preferential upregulation of BCR regulated genes in ZAP70+ CLL demonstrates a more efficient in-vivo response of ZAP-70+ cells to BCR stimulation. Our results highlight the importance of NFκ κB and BCR signaling in CLL and provide a rationale to focus treatment approaches on these central pathways.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 979-979 ◽  
Author(s):  
Georg Aue ◽  
Stefania Pittaluga ◽  
Delong Liu ◽  
Larry Stennett ◽  
Susan Soto ◽  
...  

Abstract Abstract 979 Lenalidomide's mechanism of action in chronic lymphocytic leukemia (CLL) is not well understood. In vitro data suggest that anti-leukemic immune responses are important. Tumor flare reactions during treatment have been associated with response in some but not other studies. In vivo data that mechanistically link immune stimulation to clinical responses are lacking. We designed an independent, single center, phase II trial of lenalidomide in relapsed/refractory CLL (clinicaltrials.gov: NCT00465127). Here we report final clinical data and results of multiple translational analyses that indicate that an IFNy centered immune response is critical for response. A 3 week on, 3 weeks off treatment scheme (42 day cycles) was chosen to pulse immune stimulation while trying to minimize myelosuppression. The starting dose was 20 mg daily for the first 10 patients and 10 mg for the subsequent 23. Response was measured at 24 weeks. 5 patients, 4 with del 17p, achieved a PR by IWCLL criteria (16%) and were eligible to continue drug for 4 more cycles; the PFS in these patients was 16 months compared to 7 months for all other (p<0.001). Myelosupression remained the limiting side effect. A cytokine release syndrome often accompanied by tumor flare reactions was seen in 78% of patients in cycle 1 and often recurred in subsequent cycles. Compared to other studies it appears that the long treatment free period increased the inflammatory reaction upon restarting of L. All correlative analyses reported here were performed on PBMCs, lymph node (LN) core biopsies and serum obtained from patients during cycle 1 and 2 and included flow cytometry, gene expression profiling (Affymetrix arrays), and cytokine measurements. Nine patients with decreased lymphadenopathy ≥10% (10–85%) on CT after 4 cycles were considered responders (R) for correlative studies. There was a significant decrease in CLL count (median 14% on day 8 and 49% on day 22, p<0.01) and in the number of circulating T (CD3, CD4, CD8) and NK-cells (n=22, p<0.05) with no difference between R and non-responders (NR). In contrast, the CD3 count in LN core biopsies increased 1.4 fold in R compared to matched pre-treatment biopsies (p<0.05) with no change in NR (0.95 fold). In the L free interval CLL cells rebounded to pre-treatment levels. A rapid rebound of CLL counts during treatment interruptions has been previously described but its mechanism is not well understood. In migration assays we observed a 3-fold increased migration towards SDF-1 for L compared to control cells (p=0.03), indicating that increased homing of lymphocytes to tissue sites may be responsible for the rapid decrease in peripheral counts. The cell surface molecules CD40, 54, 86, 95, DR5 were upregulated (p<0.05) while CD5 and 20 were downregulated (p<0.001) on circulating CLL cells. Effects on CD54 and CD5 were stronger in R than NR (p<0.05). Next we performed gene expression profiling on purified PB-CLL cells and LN core biopsies obtained on day 8. L induced upregulation of 95 genes, many of which are known to be regulated by interferon gamma (IFNγ). The comparison with a gene expression signature induced by recombinant IFNγ in CLL cells cultured in vitro confirmed the significant induction of a typical IFNγ response by L in vivo (n=24, p<0.0001). The IFNγ response in PB-CLL cells was no different in R vs NR (n=12, p=0.78), but in LN biopsies it was more prominent in R (n=7) than NR (n=5) (p<0.05). Consistently the IFNG gene was upregulated in LN biopsies of R but actually decreased in NR (p=0.001). Serum IFNγ levels were elevated on L (n=14 at all time points, day 4 p=0.03, day 8 p=0.01, day 22 p=0.02, day 49 p<0.01), but off drug returned to pretreatment levels. Next we sought to determine the source of IFNγ. The tumor cells are ruled out as IFNG was not expressed in purified CLL cells. By flow cytometry the number of IFNγ secreting CD4 T-cells increased on day 8 from 0.8% to 1.5%, p=0.006), an effect that was stronger in R had than NR (p<0.05). IFNγ positive NK cells did not increase on L. These data provide a first mechanistic link between the degree of Lenalidomide induced immune activation to clinical response in CLL. Based on our experience we suggest that continued dosing of L may be superior to dose interruptions. Disclosures: Aue: NHLBI, Intramural Research Program: Research Funding. Off Label Use: Lenalidomide is not FDA approved for CLL. Wiestner:NHLBI, Intramural Research Program: Research Funding.


2020 ◽  
Vol 318 (2) ◽  
pp. F285-F297 ◽  
Author(s):  
Mohammad Saleem ◽  
Conrad P. Hodgkinson ◽  
Liang Xiao ◽  
Juan A. Gimenez-Bastida ◽  
Megan L. Rasmussen ◽  
...  

Juxtaglomerular (JG) cells, major sources of renin, differentiate from metanephric mesenchymal cells that give rise to JG cells or a subset of smooth muscle cells of the renal afferent arteriole. During periods of dehydration and salt deprivation, renal mesenchymal stromal cells (MSCs) differentiate from JG cells. JG cells undergo expansion and smooth muscle cells redifferentiate to express renin along the afferent arteriole. Gene expression profiling comparing resident renal MSCs with JG cells indicates that the transcription factor Sox6 is highly expressed in JG cells in the adult kidney. In vitro, loss of Sox6 expression reduces differentiation of renal MSCs to renin-producing cells. In vivo, Sox6 expression is upregulated after a low-Na+ diet and furosemide. Importantly, knockout of Sox6 in Ren1d+ cells halts the increase in renin-expressing cells normally seen during a low-Na+ diet and furosemide as well as the typical increase in renin. Furthermore, Sox6 ablation in renin-expressing cells halts the recruitment of smooth muscle cells along the afferent arteriole, which normally express renin under these conditions. These results support a previously undefined role for Sox6 in renin expression.


2011 ◽  
Vol 22 ◽  
pp. S53-S54
Author(s):  
Digdem Aktoprakligil Aksu ◽  
Cansu Agca ◽  
Soner Aksu ◽  
Haydar Bagis ◽  
Tolga Akkoc ◽  
...  

2008 ◽  
Vol 76 (8) ◽  
pp. 3632-3639 ◽  
Author(s):  
Fabrice N. Gravelat ◽  
Thomas Doedt ◽  
Lisa Y. Chiang ◽  
Hong Liu ◽  
Scott G. Filler ◽  
...  

ABSTRACT Very little is known about the developmental stages of Aspergillus fumigatus during invasive aspergillosis. We performed real-time reverse transcription-PCR analysis on lung samples from mice with invasive pulmonary aspergillosis to determine the expression of A. fumigatus genes that are expressed at specific stages of development. In established infection, A. fumigatus exhibited mRNA expression of genes specific to developmentally competent hyphae, such as stuA. In contrast, mRNA of genes expressed by conidia and precompetent hyphae was not detected. Many genes required for mycotoxin synthesis, including aspHS, gliP, mitF, and metAP, are known to be expressed by developmentally competent hyphae in vitro. Interestingly, each of these genes was expressed at significantly higher levels during invasive infection than in vitro. The expression of gliP mRNA in vitro was found to be highly dependent on culture conditions. Furthermore, gliP expression was found to be dependent on the transcription factor StuA both in vitro and in vivo. Therefore, developmentally competent hyphae predominate during established invasive infection, and many mycotoxin genes are expressed at high levels in vivo. These results highlight the importance of the evaluation of putative virulence factors expressed by competent hyphae and analysis of gene expression levels during invasive infection rather than in vitro alone.


Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3680-3683 ◽  
Author(s):  
R. Jonas A. Nilsson ◽  
Leonora Balaj ◽  
Esther Hulleman ◽  
Sjoerd van Rijn ◽  
D. Michiel Pegtel ◽  
...  

Abstract Diagnostic platforms providing biomarkers that are highly predictive for diagnosing, monitoring, and stratifying cancer patients are key instruments in the development of personalized medicine. We demonstrate that tumor cells transfer (mutant) RNA into blood platelets in vitro and in vivo, and show that blood platelets isolated from glioma and prostate cancer patients contain the cancer-associated RNA biomarkers EGFRvIII and PCA3, respectively. In addition, gene-expression profiling revealed a distinct RNA signature in platelets from glioma patients compared with normal control subjects. Because platelets are easily accessible and isolated, they may form an attractive platform for the companion diagnostics of cancer.


2008 ◽  
Vol 23 (5) ◽  
pp. 1138-1144 ◽  
Author(s):  
Gayle M. Jones ◽  
David S. Cram ◽  
Bi Song ◽  
M. Cristina Magli ◽  
Luca Gianaroli ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Caitlin H. Kowalski ◽  
Sarah R. Beattie ◽  
Kevin K. Fuller ◽  
Elizabeth A. McGurk ◽  
Yi-Wei Tang ◽  
...  

ABSTRACTPrevious work has shown that environmental and clinical isolates ofAspergillus fumigatusrepresent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence amongA. fumigatusisolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions of low oxygen promotes virulence ofA. fumigatusin this model. To test this hypothesis, we performedin vitrofitness andin vivovirulence analyses in the triamcinolone murine model of IPA with 14 environmental and clinical isolates ofA. fumigatus. Among these isolates, we observed a strong correlation between fitness in low oxygenin vitroand virulence. In further support of our hypothesis, experimental evolution of AF293, a strain that exhibits reduced fitness in low oxygen and reduced virulence in the triamcinolone model of IPA, results in a strain (EVOL20) that has increased hypoxia fitness and a corresponding increase in virulence. Thus, the ability to thrive in low oxygen correlates with virulence ofA. fumigatusisolates in the context of steroid-mediated murine immunosuppression.IMPORTANCEAspergillus fumigatusoccupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation betweenA. fumigatusisolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence ofA. fumigatus. We describe here the first observation of a model-specific virulence phenotype correlative within vitrofitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogenA. fumigatus.


Sign in / Sign up

Export Citation Format

Share Document