Dimethyl fumarate improves adult hippocampal neurogenesis and memory impairments in aged rats in the streptozotocin model of Alzheimer’s disease

Author(s):  
Ewelina Kurowska
2019 ◽  
Vol 20 (12) ◽  
pp. 3030 ◽  
Author(s):  
Soo Jung Shin ◽  
Seong Gak Jeon ◽  
Jin-il Kim ◽  
Yu-on Jeong ◽  
Sujin Kim ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aβ) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red ginseng (RG) has been demonstrated to have beneficial effects on AD pathology. However, there is no evidence showing whether RG extract (RGE) can inhibit the mitochondrial deficit-mediated pathology in the experimental models of AD. The effects of RGE on Aβ-mediated mitochondrial deficiency were investigated in both HT22 mouse hippocampal neuronal cells and the brains of 5XFAD Aβ-overexpressing transgenic mice. To examine whether RGE can affect mitochondria-related pathology, we used immunohistostaining to study the effects of RGE on Aβ accumulation, neuroinflammation, neurodegeneration, and impaired adult hippocampal neurogenesis in hippocampal formation of 5XFAD mice. In vitro and in vivo findings indicated that RGE significantly improves Aβ-induced mitochondrial pathology. In addition, RGE significantly ameliorated AD-related pathology, such as Aβ deposition, gliosis, and neuronal loss, and deficits in adult hippocampal neurogenesis in brains with AD. Our results suggest that RGE may be a mitochondria-targeting agent for the treatment of AD.


2021 ◽  
Author(s):  
Shane M. Ohline ◽  
Connie Chan ◽  
Lucia Schoderboeck ◽  
Hollie E. Wicky ◽  
Warren P. Tate ◽  
...  

Abstract Soluble amyloid precursor protein-alpha (sAPPα) is a regulator of neuronal and memory mechanisms, while also having neurogenic and neuroprotective effects in the brain. As adult hippocampal neurogenesis is impaired in Alzheimer’s disease, we tested the hypothesis that sAPPα delivery would rescue adult hippocampal neurogenesis in an APP/PS1 mouse model of Alzheimer’s disease. An adeno-associated virus-9 (AAV9) encoding murine sAPPα was injected into the hippocampus of 8 month-old wild-type and APP/PS1 mice, and later two different thymidine analogues (XdU) were systemically injected to label adult-born cells at different time points after viral transduction. The proliferation of adult-born cells, cell survival after eight weeks, and cell differentiation into either neurons or astrocytes was studied. Proliferation was impaired in APP/PS1 mice but was restored to wild-type levels by viral expression of sAPPα. In contrast, sAPPα overexpression failed to rescue the survival of XdU+-labelled cells that was impaired in APP/PS1 mice, although it did cause a significant increase in the area density of astrocytes in the granule cell layer across both genotypes. Finally, viral expression of sAPPα reduced amyloid-beta plaque load in APP/PS1 mice in the dentate gyrus and somatosensory cortex. These data add further evidence that increased levels of sAPPα could be therapeutic for the cognitive decline in AD, in part through restoration of the proliferation of neural progenitor cells in adults.


2006 ◽  
Vol 495 (1) ◽  
pp. 70-83 ◽  
Author(s):  
Michael H. Donovan ◽  
Umar Yazdani ◽  
Rebekah D. Norris ◽  
Dora Games ◽  
Dwight C. German ◽  
...  

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Shane M. Ohline ◽  
Connie Chan ◽  
Lucia Schoderboeck ◽  
Hollie E. Wicky ◽  
Warren P. Tate ◽  
...  

AbstractSoluble amyloid precursor protein-alpha (sAPPα) is a regulator of neuronal and memory mechanisms, while also having neurogenic and neuroprotective effects in the brain. As adult hippocampal neurogenesis is impaired in Alzheimer’s disease, we tested the hypothesis that sAPPα delivery would rescue adult hippocampal neurogenesis in an APP/PS1 mouse model of Alzheimer’s disease. An adeno-associated virus-9 (AAV9) encoding murine sAPPα was injected into the hippocampus of 8-month-old wild-type and APP/PS1 mice, and later two different thymidine analogues (XdU) were systemically injected to label adult-born cells at different time points after viral transduction. The proliferation of adult-born cells, cell survival after eight weeks, and cell differentiation into either neurons or astrocytes was studied. Proliferation was impaired in APP/PS1 mice but was restored to wild-type levels by viral expression of sAPPα. In contrast, sAPPα overexpression failed to rescue the survival of XdU+-labelled cells that was impaired in APP/PS1 mice, although it did cause a significant increase in the area density of astrocytes in the granule cell layer across both genotypes. Finally, viral expression of sAPPα reduced amyloid-beta plaque load in APP/PS1 mice in the dentate gyrus and somatosensory cortex. These data add further evidence that increased levels of sAPPα could be therapeutic for the cognitive decline in AD, in part through restoration of the proliferation of neural progenitor cells in adults.


2020 ◽  
Author(s):  
Idoia Blanco-Luquin ◽  
Juan Cabello ◽  
Amaya Urdánoz-Casado ◽  
Blanca Acha ◽  
Eva Ma Gómez-Orte ◽  
...  

ABSTRACTAdult hippocampal neurogenesis (AHN) study is still a challenge. In addition to methodological difficulties is the controversy of results derived of human or animal system approaches. In view of the proven link between AHN and learning and memory impairment, we generated a straightforward in vitro model to recapitulate adult neurogenesis in the context of Alzheimer’s disease (AD).Neural progenitor cells (NPCs) monolayer culture was differentiated for a period of 29 days and Aβ peptide 1-42 was administered once a week. mRNA expression of NEUROD1, NCAM1, TUBB3, RBFOX3, CALB1 and GFAP genes was determined by RT-qPCR.Phenotypic changes were observed during directed differentiation. Except for GFAP and CALB1, these changes correlated with altered expression profile of all genes since 9 days. Only TUBB3 expression remained constant while NEUROD1, NCAM1 and RBFOX3 expression increased over time. Moreover, Aβ treated NPCs showed transient decreases of mRNA expression for NCAM1, TUBB3 and RBFOX3 genes at 9 or 19 days.Our in vitro human NPCs model is framed within the multistep process of AHN in the SGZ of the DG. Remarkably, its transcriptional assessment might reflect alterations detected in AD human patients, deepening our understanding of the disorder and possibly of its pathogenesis.SUMMARY STATEMENTTranscriptional profile of a number of genes recapitulating particular stages of Adult hippocampal neurogenesis in the context of Alzheimer’s disease


Sign in / Sign up

Export Citation Format

Share Document