scholarly journals Correlation of Wall Shear Stress and Vessel Wall Enhancement for Intracranial Aneurysm Rupture Risk Stratification

Author(s):  
Michael Maonan Pan
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Y. Zhang ◽  
H. Takao ◽  
Y. Murayama ◽  
Y. Qian

Although wall shear stress (WSS) has long been considered a critical indicator of intracranial aneurysm rupture, there is still no definite conclusion as to whether a high or a low WSS results in aneurysm rupture. The reason may be that the effect of WSS direction has not been fully considered. The objectives of this study are to investigate the magnitude of WSS (WSS) and its divergence on the aneurysm surface and to test the significance of both in relation to the aneurysm rupture. Patient-specific computational fluid dynamics (CFD) was used to compute WSS and wall shear stress divergence (WSSD) on the aneurysm surface for nineteen patients. Our results revealed that if highWSSis stretching aneurysm luminal surface, and the stretching region is concentrated, the aneurysm is under a high risk of rupture. It seems that, by considering both direction and magnitude of WSS, WSSD may be a better indicator for the risk estimation of aneurysm rupture (154).


2018 ◽  
Vol 128 (3) ◽  
pp. 723-730 ◽  
Author(s):  
Sherif Rashad ◽  
Shin-ichiro Sugiyama ◽  
Kuniyasu Niizuma ◽  
Kenichi Sato ◽  
Hidenori Endo ◽  
...  

OBJECTIVERisk factors for aneurysm rupture have been extensively studied, with several factors showing significant correlations with rupture status. Several studies have shown that aneurysm shape and hemodynamics change after rupture. In the present study the authors investigated a static factor, the bifurcation angle, which does not change after rupture, to understand its effect on aneurysm rupture risk and hemodynamics.METHODSA hospital database was retrospectively reviewed to identify patients with cerebral aneurysms treated surgically or endovascularly in the period between 2008 and 2015. After acquiring 3D rotational angiographic data, 3D stereolithography models were created and computational fluid dynamic analysis was performed using commercially available software. Patient data (age and sex), morphometric factors (aneurysm volume and maximum height, aspect ratio, bifurcation angle, bottleneck ratio, and neck/parent artery ratio), and hemodynamic factors (inflow coefficient and wall shear stress) were statistically compared between ruptured and unruptured groups.RESULTSSeventy-one basilar tip aneurysms were included in this study, 22 ruptured and 49 unruptured. Univariate analysis showed aspect ratio, bifurcation angle, bottleneck ratio, and inflow coefficient were significantly correlated with a ruptured status. Logistic regression analysis showed that aspect ratio and bifurcation angle were significant predictors of a ruptured status. Bifurcation angle was inversely correlated with inflow coefficient (p < 0.0005), which in turn correlated directly with mean (p = 0.028) and maximum (p = 0.014) wall shear stress (WSS) using Pearson's correlation coefficient, whereas aspect ratio was inversely correlated with mean (0.012) and minimum (p = 0.018) WSS.CONCLUSIONSBifurcation angle and aspect ratio are independent predictors for aneurysm rupture. Bifurcation angle, which does not change after rupture, is correlated with hemodynamic factors including inflow coefficient and WSS, as well as rupture status. Aneurysms with the hands-up bifurcation configuration are more prone to rupture than aneurysms with other bifurcation configurations.


2011 ◽  
Vol 4 (5) ◽  
pp. 351-357 ◽  
Author(s):  
Jianping Xiang ◽  
Markus Tremmel ◽  
John Kolega ◽  
Elad I Levy ◽  
Sabareesh K Natarajan ◽  
...  

1996 ◽  
pp. 403-407 ◽  
Author(s):  
Moreno Bardelli ◽  
Renzo Carretta ◽  
Domenico Dotti ◽  
Bruno Fabris ◽  
Fabio Fischetti ◽  
...  

2013 ◽  
Vol 155 (8) ◽  
pp. 1559-1563 ◽  
Author(s):  
Kenichi Kono ◽  
Nagatsuki Tomura ◽  
Ryo Yoshimura ◽  
Tomoaki Terada

2015 ◽  
Vol 8 (8) ◽  
pp. 808-812 ◽  
Author(s):  
Ying Zhang ◽  
Linkai Jing ◽  
Jian Liu ◽  
Chuanhui Li ◽  
Jixing Fan ◽  
...  

ObjectiveTo identify clinical, morphological, and hemodynamic independent characteristic factors that discriminate posterior communicating artery (PCoA) aneurysm rupture status.Methods173 patients with single PCoA aneurysms (108 ruptured, 65 unruptured) between January 2012 and June 2014 were retrospectively collected. Patient-specific models based on their three-dimensional digital subtraction angiography images were constructed and analyzed by a computational fluid dynamic method. All variables were analyzed by univariate analysis and multivariate logistic regression analysis.ResultsTwo clinical factors (younger age and atherosclerosis), three morphological factors (higher aspect ratio, bifurcation type, and irregular shape), and six hemodynamic factors (lower mean and minimum wall shear stress, higher oscillatory shear index, a greater portion of area under low wall shear stress, unstable and complex flow pattern) were significantly associated with PCoA aneurysm rupture. Independent factors characterizing the rupture status were identified as age (OR 0.956, p=0.015), irregular shape (OR 6.709, p<0.001), and minimum wall shear stress (OR 0.001, p=0.038).ConclusionsWe combined clinical, morphological, and hemodynamic characteristics analysis and found the three strongest independent factors for PCoA aneurysm rupture were younger age, irregular shape, and low minimum wall shear stress. This may be useful for guiding risk assessments and subsequent treatment decisions for PCoA aneurysms.


Sign in / Sign up

Export Citation Format

Share Document