Bayesian Calibration and Uncertainty quantification of a rate-dependent cohesive zone model.

Author(s):  
Ponkrshnan Thiagarajan ◽  
Muhammed R. Imam ◽  
Trisha Sain ◽  
Susanta Ghosh
Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 749 ◽  
Author(s):  
Dong Li ◽  
Demin Wei

In this paper, rate-dependent cohesive zone model was established to numerical simulate the fracture process of soda-lime glass under impact loading. Soda-lime glass is widely used in architecture and automobile industry due to its transparency. To improve the accuracy of fracture simulation of soda-lime glass under impact loading, strain rate effect was taken into consideration and a rate-dependent cohesive zone model was established. Tensile-shear mixed mode fracture was also taken account. The rate-dependent cohesive zone model was implemented in the commercial finite element code ABAQUS/Explicit with the user subroutine VUMAT. The fracture behavior of a monolithic glass plate impacted by a hemispherical impactor was simulated. The simulation results demonstrated that the rate-dependent cohesive zone model is more suitable to describe the impact failure characteristics of a monolithic glass plate, compared to cohesive zone model without consideration of strain rate. Moreover, the effect of the strain rate sensitivity coefficient C, the mesh size of glass plate and the impact velocity on the fracture characteristics were studied.


2018 ◽  
Vol 774 ◽  
pp. 84-89 ◽  
Author(s):  
Roman Vodička ◽  
Katarína Krajníková

A model for numerical analysis of interface damage which leads to interface crack initiationand propagation in multi-domain structures under cyclic loading is considered. Modelling of damagetakes into account various relations between interface stresses and displacement gaps providing theresponse of a cohesive zone model, additionally equipped by a kind of viscosity associated to theevolution of the interface damage. Together with repeating loading-unloading conditions, it makesthis damage process to have a fatigue-like character, where the crack appears for smaller magnitudeof the cyclic load than for pure uploading.


1993 ◽  
Vol 115 (3) ◽  
pp. 252-261 ◽  
Author(s):  
Leif-Olof Fager ◽  
J. L. Bassani

A cohesive zone model of the Dugdale-Barenblatt type is used to investigate crack growth under small-scale-creep/damage conditions. The material inside the cohesive zone is described by a power-law viscous overstress relation modified by a one-parameter damage function of the Kachanov type. The stress and displacement profiles in the cohesive zone and the velocity dependence of the fracture toughness are investigated. It is seen that the fracture toughness increases rapidly with the velocity and asymptotically approaches the case that neglects damage.


2005 ◽  
Vol 128 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Yong-Rak Kim ◽  
David H. Allen ◽  
Gary D. Seidel

This paper presents a model for predicting the damage-induced mechanical response of particle-reinforced composites. The modeling includes the effects of matrix viscoelasticity and fracture, both within the matrix and along the boundaries between matrix and rigid particles. Because of these inhomogeneities, the analysis is performed using the finite element method. Interface fracture is predicted by using a nonlinear viscoelastic cohesive zone model. Rate-dependent viscoelastic behavior of the matrix material and cohesive zone is incorporated by utilizing a numerical time-incrementalized algorithm. The proposed modeling approach can be successfully employed for numerous types of solid media that exhibit matrix viscoelasticity and complex damage evolution characteristics within the matrix as well as along the matrix-particle boundaries. Computational results are given for various asphalt concrete mixtures. Simulation results demonstrate that each model parameter and design variable significantly influences the mechanical behavior of the mixture.


Sign in / Sign up

Export Citation Format

Share Document