Stable Crack Growth in Rate-Dependent Materials With Damage

1993 ◽  
Vol 115 (3) ◽  
pp. 252-261 ◽  
Author(s):  
Leif-Olof Fager ◽  
J. L. Bassani

A cohesive zone model of the Dugdale-Barenblatt type is used to investigate crack growth under small-scale-creep/damage conditions. The material inside the cohesive zone is described by a power-law viscous overstress relation modified by a one-parameter damage function of the Kachanov type. The stress and displacement profiles in the cohesive zone and the velocity dependence of the fracture toughness are investigated. It is seen that the fracture toughness increases rapidly with the velocity and asymptotically approaches the case that neglects damage.

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Huan Li ◽  
Jinshan Li ◽  
Huang Yuan

A cyclic cohesive zone model is applied to characterize the fatigue crack growth behavior of a IN718 superalloy which is frequently used in aerospace components. In order to improve the limitation of fracture mechanics-based models, besides the predictions of the moderate fatigue crack growth rates at the Paris’ regime and the high fatigue crack growth rates at the high stress intensity factor ΔK levels, the present work is also aimed at simulating the material damage uniformly and examining the influence of the cohesive model parameters on fatigue crack growth systematically. The gradual loss of the stress-bearing ability of the material is considered through the degradation of a novel cohesive envelope. The experimental data of cracked specimens are used to validate the simulation result. Based on the reasonable estimation for the model parameters, the fatigue crack growth from moderate to high ΔK levels can be reproduced under the small-scale yielding condition, which is in fair agreement with the experimental results.


1996 ◽  
Vol 118 (2) ◽  
pp. 192-200 ◽  
Author(s):  
Huang Yuan ◽  
Guoyu Lin ◽  
Alfred Cornec

In the present paper, ductile crack growth in an aluminium alloy is numerically simulated using a cohesive zone model under both plane stress and plane strain conditions for two different fracture types, shear and normal modes. The cohesive law for ductile fracture consists of two parts—a specific material’s separation traction and energy. Both are assumed to be constant during ductile fracture (stable crack growth). In order to verify the assumed cohesive law to be suitable for ductile fracture processes, experimental records are used as control curves for the numerical simulations. For a constant separation traction, determined experimentally from tension test data, the corresponding cohesive energy was determined by finite element calculations. It is confirmed that the cohesive zone model can be used to characterize a single ductile fracture mode and is roughly independent of stable crack extention. Both the cohesive traction and the cohesive fracture energy should be material specific parameters. The extension of the cohesive zone is restricted to a very small region near the crack tip and is in the order of the physical fracture process. Based on the present observations, the cohesive zone model is a promising criterion to characterize ductile fracture.


Author(s):  
Cheng Liu ◽  
Leonid Gutkin ◽  
Douglas Scarth

Zr-2.5Nb pressure tubes in CANDU 1 reactors are susceptible to hydride formation when the solubility of hydrogen in the pressure tube material is exceeded. As temperature decreases, the propensity to hydride formation increases due to the decreasing solubility of hydrogen in the Zr-2.5Nb matrix. Experiments have shown that the presence of hydrides is associated with reduction in the fracture toughness of Zr-2.5Nb pressure tubes below normal operating temperatures. Cohesive-zone approach has recently been used to address this effect. Using this approach, the reduction in fracture toughness due to hydrides was modeled by a decrease in the cohesive-zone restraining stress caused by the hydride fracture and subsequent failure of matrix ligaments between the fractured hydrides. As part of the cohesive-zone model development, the ligament thickness, as represented by the radial spacing between adjacent fractured circumferential hydrides, was characterized quantitatively. Optical micrographs were prepared from post-tested fracture toughness specimens, and quantitative metallography was performed to characterize the hydride morphology in the radial-circumferential plane of the pressure tube. In the material with a relatively low fraction of radial hydrides, further analysis was performed to characterize the radial spacing between adjacent fractured circumferential hydrides. The discrete empirical distributions were established and parameterized using continuous probability density functions. The resultant parametric distributions of radial hydride spacing were then used to infer the proportion of matrix ligaments, whose thickness would not exceed the threshold value for low-energy failure. This paper describes the methodology used in this assessment and discusses its results.


Author(s):  
Chris Bassindale ◽  
Xin Wang ◽  
William R. Tyson ◽  
Su Xu

Abstract In this work, the cohesive zone model (CZM) was used to examine the transferability of the crack tip opening angle (CTOA) from small-scale to full-scale geometries. The pipe steel STPG370 was modeled. A drop-weight tear test (DWTT) model and pipe model were studied using the finite element code ABAQUS 2017x. The cohesive zone model was used to simulate crack propagation in 3D. The CZM parameters were calibrated based on matching the surface CTOA measured from a DWTT finite element model to the surface CTOA measured from the experimental DWTT specimen. The mid-thickness CTOA of the DWTT model was in good agreement with the experimental value determined from E3039 and the University of Tokyo group’s load-displacement data. The CZM parameters were then applied to the pipe model. The internal pressure distribution and decay during the pipe fracture process was modeled using the experimental data and implemented through a user-subroutine (VDLOAD). The mid-thickness CTOA from the DWTT model was similar to the mid-thickness CTOA from the pipe model. The average surface CTOA of the pipe model was in good agreement with the average experimental value. The results give confidence in the transferability of the CTOA between small-scale specimens and full-scale pipe.


2020 ◽  
Vol 110 ◽  
pp. 102804
Author(s):  
M. Mohajer ◽  
M. Bocciarelli ◽  
P. Colombi ◽  
A. Hosseini ◽  
A. Nussbaumer ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 749 ◽  
Author(s):  
Dong Li ◽  
Demin Wei

In this paper, rate-dependent cohesive zone model was established to numerical simulate the fracture process of soda-lime glass under impact loading. Soda-lime glass is widely used in architecture and automobile industry due to its transparency. To improve the accuracy of fracture simulation of soda-lime glass under impact loading, strain rate effect was taken into consideration and a rate-dependent cohesive zone model was established. Tensile-shear mixed mode fracture was also taken account. The rate-dependent cohesive zone model was implemented in the commercial finite element code ABAQUS/Explicit with the user subroutine VUMAT. The fracture behavior of a monolithic glass plate impacted by a hemispherical impactor was simulated. The simulation results demonstrated that the rate-dependent cohesive zone model is more suitable to describe the impact failure characteristics of a monolithic glass plate, compared to cohesive zone model without consideration of strain rate. Moreover, the effect of the strain rate sensitivity coefficient C, the mesh size of glass plate and the impact velocity on the fracture characteristics were studied.


Sign in / Sign up

Export Citation Format

Share Document