Innate immune recognition of dsRNA in respiratory epithelial cells induces IL-1 and IL-18 secretion, cell death and GSDME cleavage

Author(s):  
Coralie GUY
Allergy ◽  
2015 ◽  
Vol 70 (8) ◽  
pp. 910-920 ◽  
Author(s):  
M. Contoli ◽  
K. Ito ◽  
A. Padovani ◽  
D. Poletti ◽  
B. Marku ◽  
...  

Author(s):  
Jeanne Bigot ◽  
Loic Guillot ◽  
Juliette Guitard ◽  
Manon Ruffin ◽  
Harriet Corvol ◽  
...  

Abstract Human bronchial epithelial cells play a key role in airway immune homeostasis. We hypothesized that these sentinel cells can remember a previous contact with pathogen compounds and respond nonspecifically to reinfection, a phenomenon called innate immune memory. We demonstrated that their pre-exposure to Pseudomonas aeruginosa flagellin modify their inflammatory response to a second, non-related stimulus, including live pathogens or lipopolysaccharide. Using histone acetyltransferase and methyltransferase inhibitors, we showed that this phenomenon relied on epigenetic regulation. This report is a major breakthrough in the field of multi-microbial respiratory tract infections, wherein control of inflammatory exacerbations is a major therapeutic issue.


2002 ◽  
Vol 28 (8) ◽  
pp. 591-607 ◽  
Author(s):  
Uday B. Nanavaty ◽  
Rafal Pawliczak ◽  
Jeremy Doniger ◽  
Mark T. Gladwin ◽  
Mark J. Cowan ◽  
...  

2018 ◽  
Vol 92 (14) ◽  
Author(s):  
SangJoon Lee ◽  
Mikako Hirohama ◽  
Masayuki Noguchi ◽  
Kyosuke Nagata ◽  
Atsushi Kawaguchi

ABSTRACT Respiratory epithelial cell death by influenza virus infection is responsible for the induction of inflammatory responses, but the exact cell death mechanism is not understood. Here we showed that influenza virus infection induces apoptosis and pyroptosis in normal or precancerous human bronchial epithelial cells. Apoptosis was induced only in malignant tumor cells infected with influenza virus. In human precancerous respiratory epithelial cells (PL16T), the number of apoptotic cells increased at early phases of infection, but pyroptotic cells were observed at late phases of infection. These findings suggest that apoptosis is induced at early phases of infection but the cell death pathway is shifted to pyroptosis at late phases of infection. We also found that the type I interferon (IFN)-mediated JAK-STAT signaling pathway promotes the switch from apoptosis to pyroptosis by inhibiting apoptosis possibly through the induced expression of the Bcl-xL anti-apoptotic gene. Further, the inhibition of JAK-STAT signaling repressed pyroptosis but enhanced apoptosis in infected PL16T cells. Collectively, we propose that type I IFN signaling pathway triggers pyroptosis but not apoptosis in the respiratory epithelial cells in a mutually exclusive manner to initiate proinflammatory responses against influenza virus infection. IMPORTANCE Respiratory epithelium functions as a sensor of infectious agents to initiate inflammatory responses along with cell death. However, the exact cell death mechanism responsible for inflammatory responses by influenza virus infection is still unclear. We showed that influenza virus infection induced apoptosis and pyroptosis in normal or precancerous human bronchial epithelial cells. Apoptosis was induced at early phases of infection, but the cell death pathway was shifted to pyroptosis at late phases of infection under the regulation of type I IFN signaling to promote proinflammatory cytokine production. Taken together, our results indicate that the type I IFN signaling pathway plays an important role to induce pyroptosis but represses apoptosis in the respiratory epithelial cells to initiate proinflammatory responses against influenza virus infection.


2013 ◽  
Vol 190 (4) ◽  
pp. 1603-1613 ◽  
Author(s):  
Frederik Seiler ◽  
Jan Hellberg ◽  
Philipp M. Lepper ◽  
Andreas Kamyschnikow ◽  
Christian Herr ◽  
...  

2021 ◽  
Vol 6 (59) ◽  
pp. eabi9007
Author(s):  
Minghua Li ◽  
Max Ferretti ◽  
Baoling Ying ◽  
Hélène Descamps ◽  
Emily Lee ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, resulting millions of infections and deaths with few effective interventions available. Here, we demonstrate that SARS-CoV-2 evades interferon (IFN) activation in respiratory epithelial cells, resulting in a delayed response in bystander cells. Since pretreatment with IFNs can block viral infection, we reasoned that pharmacological activation of innate immune pathways could control SARS-CoV-2 infection. To identify potent antiviral innate immune agonists, we screened a panel of 75 microbial ligands that activate diverse signaling pathways and identified cyclic dinucleotides (CDNs), canonical STING agonists, as antiviral. Since CDNs have poor bioavailability, we tested the small molecule STING agonist diABZI, and found that it potently inhibits SARS-CoV-2 infection of diverse strains including variants of concern (B.1.351) by transiently stimulating IFN signaling. Importantly, diABZI restricts viral replication in primary human bronchial epithelial cells and in mice in vivo. Our study provides evidence that activation of STING may represent a promising therapeutic strategy to control SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document