scholarly journals Pola Pasang Surut Komponen Diurnal di Perairan Teluk Tambelan Provinsi Kepulauan Riau

PRISMA FISIKA ◽  
2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Fratiwi Susanti ◽  
Desti Ardiani ◽  
Yulianti Yulianti ◽  
Muliadi Muliadi ◽  
Arie Antasari Kushadiwijayanto

Model hidrodinamika Princeton Ocean Model telah diaplikasikan untuk mempelajari pola pasang surut di perairan Teluk Tambelan Provinsi Kepulauan Riau. Penelitian ini bertujuan untuk mengkaji perambatan gelombang pasang surut dan pola arus pasang surut komponen diurnal (K1 dan O1). Data yang digunakan sebagai masukan model adalah data elevasi pasang surut dari hasil Tidal Model Driver yang diberikan pada bagian batas dan data batimetri dari hasil pengamatan di lapangan. Hasil model diverifikasi dengan pengukuran lapangan, sehingga mendapatkan hasil bahwa amplitudo pasang surut komponen K1 memiliki selisih sebesar 0,0217 m, sedangkan pada komponen O1 sebesar 0,0515 m. Pada amplitudo kecepatan arus, verifikasi hasil model untuk komponen K1 memiliki selisih resultan arus sebesar 0,0848 m/s, dan komponen O1 sebesar 0,1058 m/s. Selisih nilai amplitudo pasang surut menunjukkan hasil yang cukup baik dan sebaliknya amplitudo kecepatan arus menunjukkan hasil yang kurang baik. Pada pola amplitudo, untuk komponen K1 dan O1 menunjukkan adanya kesamaan, dimana sebaran amplitudo yang lebih tinggi berada di mulut teluk sebelah Barat dan beberapa bagian di kepala teluk. Pola arus hasil model, baik pada komponen K1 maupun O1 pada saat pasang tertinggi arus cenderung bergerak ke arah Utara masuk ke dalam teluk, sedangkan saat surut terendah arus bergerak ke arah Selatan keluar teluk. Sedangan pada kecepatan arus hasil model untuk komponen K1dan O1, kecepatan maksimum terjadi pada kondisi yang sama yaitu pasang menuju surut.

2020 ◽  
Vol 3 (3) ◽  
pp. 77
Author(s):  
Venansius Venansius ◽  
Arie Antasari Kushadiwijayanto ◽  
Risko Risko ◽  
Yusuf Arief Nurrahman ◽  
Shifa Helena

Karakteristik pasang surut Komponen K1 dan M2 di Perairan Kepulauan Tambelan, Provinsi Kepulauan Riau telah dipelajari menggunakan model Princeton Ocean Model (POM) hidrodinamika Dua-Dimensi. Persamaan hidrodinamika Dua-Dimensi dengan suku non-linearnya diselesaikan secara eksplisit melalui metode beda hingga. Prosedur penelitian diawali dengan pengukuran elevasi muka air selama 30 hari. Masukan model adalah data elevasi dan arus pasang surut dari hasil Tidal Model Driver (TMD) serta data batimetri pushidorsal yang diberikan pada bagian syarat batas. Model dijalankan selama 30 hari, dalam hal ini simulasi elevasi muka air selama 3 hari pertama digunakan sebagai spin up dan hasil simulasi 27 hari terakhir dianalisis untuk mendapatkan amplitudo dan keterlambatan fase yang akan diverifikasi dengan data lapangan. Hasil simulasi model cukup baik ketika diverifikasi dengan data observasi, selisih amplitudo dan keterlambatan fase iyalah K1 (4 cm dan 273⁰), M2 (16 cm dan 101⁰). Elevasi dianalisis harmonik untuk mendapatkan arah perambatan gelombang pasang surut sehingga dapat menunjukan pola sebaran amplitudo dan fase. Amplitudo K1 berkisar dari 14 cm sampai 26 cm dan M2 berkisar antara 12 cm sampai 26 cm. Sedangkan arah penjalaran gelombang K1 masuk dari Utara yang menyebar ke Selatan dan gelombang M2 masuk dari Barat Laut yang merambat ke arah Tenggara Pulau Tambelan. Berdasarkan hasil yang didapatkan maka dapat disimpulkan bahwa gelombang pasang surut komponen K1 masuk dari Samudra Pasifik dan gelombang komponen M2 masuk dari laut Natuna Utara.


2020 ◽  
Vol 3 (3) ◽  
pp. 84
Author(s):  
Yulius Alin ◽  
Arie Antasari Kushadiwijayanto ◽  
Risko Risko ◽  
Yusuf A Nurrahman ◽  
Shifa Helena

Penelitian arus pasang surut dilakukan di Perairan Kepulauan Tambelan mulai 27 April sampai 27 Mei 2019. Penelitian ini bertujuan untuk memetakan pola pergerakan arus pasang surut dan kecepatan arus menggunakan Princeton Ocean Model (POM). Masukan model yaitu elevasi dan arus yang diperoleh dari Tidal Model Driver (TMD) yang menggunakan komponen pasang surut K1, dan M2. Data kedalaman didapatkan dari hasil digitasi peta pusat hidrografi dan oseanografi TNI Angkatan laut. Untuk verifikasi, data hasil model dibandingkan dengan data pengukuran lapangan. Hasil verifikasi menunjukan bahwa selisih elevasi dan arus hasil model terhadap data lapangan masing-masing adalah -0,01 m dan 0,039 m/s.  Berdasarkan hasil model, arus pasang surut pada saat surut hingga pasang menunjukan pergerakan dari timur laut ke barat daya dengan kecepatan maksimum komponen K1 0,9337 m/s, M2 0,1384 m/s. Arus pasang surut pada saat pasang menunjukan pergerakan dari timur menuju selatan dengan kecepatan maksimum komponen K1 0,5731 m/s, M2 0.1665 m/s. Arus pasang surut pada saat pasang hingga surut komponen K1 menunjukan pergerakan dari timur ke barat daya, komponen M2 menunjukan pergerakan dari barat daya ke timur laut  dengan kecepatan maksimum komponen K1 1.4139, M2 0.2066 m/s. Arus pasang surut pada saat surut menunjukan pergerakan dari selatan ke utara namun arus komponen K1 berbelokan kearah timur dengan kecepatan maksimum komponen K1 1.1691, M2 0.1766 m/s.


2015 ◽  
Vol 32 (1) ◽  
pp. 144-163 ◽  
Author(s):  
Richard M. Yablonsky ◽  
Isaac Ginis ◽  
Biju Thomas ◽  
Vijay Tallapragada ◽  
Dmitry Sheinin ◽  
...  

AbstractThe Princeton Ocean Model for Tropical Cyclones (POM-TC), a version of the three-dimensional primitive equation numerical ocean model known as the Princeton Ocean Model, was the ocean component of NOAA’s operational Hurricane Weather Research and Forecast Model (HWRF) from 2007 to 2013. The coupled HWRF–POM-TC system facilitates accurate tropical cyclone intensity forecasts through proper simulation of the evolving SST field under simulated tropical cyclones. In this study, the 2013 operational version of HWRF is used to analyze the POM-TC ocean temperature response in retrospective HWRF–POM-TC forecasts of Atlantic Hurricanes Earl (2010), Igor (2010), Irene (2011), Isaac (2012), and Leslie (2012) against remotely sensed and in situ SST and subsurface ocean temperature observations. The model generally underestimates the hurricane-induced upper-ocean cooling, particularly far from the storm track, as well as the upwelling and downwelling oscillation in the cold wake, compared with observations. Nonetheless, the timing of the model SST cooling is generally accurate (after accounting for along-track timing errors), and the ocean model’s vertical temperature structure is generally in good agreement with observed temperature profiles from airborne expendable bathythermographs.


2012 ◽  
Vol 9 (1) ◽  
pp. 63-103
Author(s):  
K. O'Driscoll ◽  
V. Kamenkovich

Abstract. The analysis is presented of the distribution of deep ocean turbulence characteristics on the horizontal scale of order 100 km in the vicinity of the Lifamatola Sill, from the Southern Maluku Sea (north of the sill) to the Seram Sea (south of the sill). The turbulence characteristics were calculated with a regional model of the Indonesian seas circulation based on the Princeton Ocean Model (POM), incorporating the Mellor-Yamada turbulence closure scheme. The analysis has been carried out for the entire Indonesian seas region, including areas around important topographic features, such as the Lifamatola Sill, the North Sangihe Ridge, the Dewakang Sill and the North and South Halmahera Sea Sills. To illustrate results of application of the Mellor-Yamada closure scheme we have focused on the description of features of turbulence characteristics across the Lifamatola Sill because dynamically this region is very important and some estimates of mixing coefficients in this area are available. As is well known, the POM model output provides both dynamical (depth-integrated and 3-D velocities, temperature, salinity, and sea-surface-height) and turbulence characteristics (kinetic energy and master scale of turbulence, mixing coefficients of momentum, temperature and salinity, etc.). As a rule, the analysis of POM modeling results has been restricted to the study of corresponding dynamical characteristics, however the study of turbulence characteristics is essential to understanding the dynamics of the ocean circulation as well. Due to the absence of direct measurements of turbulence characteristics in the analyzed area, we argued the validity of the simulated characteristics in the light of their compatibility with some general principles. Thus, along these lines, vertical profiles of across-the-sill velocities, twice the kinetic energy of turbulence, turbulence length scale, the separate terms in the equation of kinetic energy of turbulence, the Richardson number, and finally coefficients of mixing of momentum and temperature and salinity are discussed. Average values of the vertical mixing coefficient compare well with indirect estimates previously made from diagnostic calculations based on Munk's model.


2013 ◽  
Vol 31 (1) ◽  
pp. 17 ◽  
Author(s):  
José Francisco Almeida de Souza ◽  
José Luiz Lima de Azevedo ◽  
Leopoldo Rota de Oliveira ◽  
Ivan Dias Soares ◽  
Maurício Magalhães Mata

One of the most challenging issues in oceanography is the simulation of the mixing processes, which are responsible for diffusion of momentum, heat, salt, sediments etc. In the modeling of flow, the hydrodynamic model simulates the properties of the mean flow while the turbulence model, coupled to the first, is responsible for simulating the mixing processes. In this article it is used the Princeton Ocean Model (POM), which includes the well known turbulent closure model q2 − q2L of Mellor & Yamada (1982), level 2.5. To add flexibility to the modeling, the k − ε and k − ω models, which belong to the same class of models, are incorporated into the POM and two test cases, one involving the deepening of the oceanic mixed layer and the other addressing the estuarine circulation, are carried out to allow the quality assessment of the models implementation in the computer code. The tests indicated that the model implementation was adequate. Comparing with the original model available in the Princeton Ocean Model, the results showed that the model k − ε tends to overestimate the mixed layer, while the model k − ω underestimates it, within an acceptable range of tolerance. In terms of estuarine circulation, the k − ε and k − ω models showed a greater capacity of mixing at the bottom of the estuarine mixing zone and also at the surface layer.RESUMO: Uma das questões mais desafiadoras em oceanografia é a simulação dos processos de mistura, responsáveis pela difusão de momentum, calor, sal, sedimentos etc. Na modelagem de escoamentos, o modelo hidrodinâmico simula as propriedades do escoamento médio, enquanto o modelo de turbulência, acoplado ao primeiro, é o responsável por simular os processos de mistura. Nesse artigo é utilizado o Princeton Ocean Model (POM), o qual traz acoplado o conhecido esquema de fechamento turbulento q2 − q2L de Mellor & Yamada (1982), n´ıvel 2.5. Para adicionar flexibilidade à modelagem, os modelos k − ε e k − ω, da mesma categoria de modelos, são incorporados ao POM e dois casos-teste, um envolvendo o aprofundamento da camada de mistura oceânica e o outro a circulação estuarina, são realizados para permitir a avaliação da qualidade da implementação dos modelos no código computacional. Os testes indicaram que a implementação dos modelos foi adequada. Tendo como referência o modelo original do POM, os resultados mostraram que o modelo k − ε tende a superestimar a camada de mistura, enquanto o k − ω a subestima, numa faixa aceitável de tolerância. Em termos de circulação estuarina, os modelos k − ε e k − ω apresentaram uma maior capacidade de mistura tanto no fundo da zona de mistura estuarina como na camada superficial.Palavras-chave: modelos de turbulência, processos de mistura, modelos a duas equações, camada de mistura, circulação estuarina.


1998 ◽  
Vol 46 (2) ◽  
pp. 135-156 ◽  
Author(s):  
Joseph Harari ◽  
Ricardo de Camargo

Foi implementado o Princeton Ocean Model (POM) para a região costeira de Santos (46° - 47°W, 23°40' - 24°30'S), com grade regular de resolução == I km e 11 níveis sigrna na vertical. O modelo foi utilizado em simulações de maré, com a especificação das correspondentes oscilações nos contornos, calculadas com base em mapas cotidais da plataforma. O modelo foi processado considerando isoladamente as componentes principais lunar e solar (M2 e S2), cada qual por 5 dias, e com as 9 principais componentes de maré conjuntamente, por 31 dias. As análises de maré das séries temporais de resultados possibilitaram a composição de mapas com linhas cotidais e eixos das elipses de correntes de superfície. Esses mapas indicam as características da propagação das ondas de maré na área modelada, com as distribuições espaciais de suas elevações e correntes. Os aspectos de maior interesse no estudo realizado são: o contraste das intensidades das circulações, entre a parte mais profunda e regiões internas rasas; as marcantes diferenças de intensidade de correntes nos dois lados da Baía de Santos; a convergência / divergência das correntes nos Canais de São Vicente e de Bertioga; assimetrias de maré nas regiões rasas; e rotação anti-horária das correntes na área costeira. O modelo pode ser utilizado em previsões operacionais de marés e correntes de maré na área de estudo.


Sign in / Sign up

Export Citation Format

Share Document