Droplet Factories: Synthesis and Assembly of Silver and Palladium Nanoparticles at the Liquid-Liquid Interface

Author(s):  
Suchanuch Sachdev ◽  
Rhushabh Maugi ◽  
Sam Davis ◽  
Scott Doak ◽  
Zhaoxia Zhou ◽  
...  

<div>The interface between two immiscible liquids represent an ideal substrate for the assembly of nanomaterials. The defect free surface provides a reproducible support for creating densely packed ordered materials. Here a droplet flow reactor is presented for the synthesis and/ or assembly of nanomaterials at the interface of the emulsion. Each droplet acts as microreactor for a reaction between decamethylferrocene (DmFc) within the hexane and metal salts (Ag+/ Pd2+) in the aqueous phase. The hypothesis was that a spontaneous, interfacial reaction would lead to the assembly of nanomaterials creating a Pickering emulsion. The subsequent removal of the solvents showed how the Ag nanoparticles were trapped at the interface and retain the shape of the droplet, however the Pd nanoparticles were dispersed with no tertiary structure. To further exploit this, a one-step process where the particles are synthesised and then assembled into core-shell materials was proposed. The same reactions were performed in the presence of oleic acid stabilise Iron oxide nanoparticles dispersed within the hexane. It was shown that by changing the reaction rate and ratio between palladium and iron oxide a continuous coating of palladium onto iron oxide microspheres can be created. The same reaction with silver, was unsuccessful and resulted in the silver particles being shed into solution, or incorporated within the iron oxide micro particle. These insights offer a new method and chemistry within flow reactors for the creation of palladium and silver nanoparticles. We use the technique to create metal coated iron oxide nanomaterials but the methodology could be easily transferred to the assembly of other materials.</div><div><br></div>

2019 ◽  
Author(s):  
Suchanuch Sachdev ◽  
Rhushabh Maugi ◽  
Sam Davis ◽  
Scott Doak ◽  
Zhaoxia Zhou ◽  
...  

<div>The interface between two immiscible liquids represent an ideal substrate for the assembly of nanomaterials. The defect free surface provides a reproducible support for creating densely packed ordered materials. Here a droplet flow reactor is presented for the synthesis and/ or assembly of nanomaterials at the interface of the emulsion. Each droplet acts as microreactor for a reaction between decamethylferrocene (DmFc) within the hexane and metal salts (Ag+/ Pd2+) in the aqueous phase. The hypothesis was that a spontaneous, interfacial reaction would lead to the assembly of nanomaterials creating a Pickering emulsion. The subsequent removal of the solvents showed how the Ag nanoparticles were trapped at the interface and retain the shape of the droplet, however the Pd nanoparticles were dispersed with no tertiary structure. To further exploit this, a one-step process where the particles are synthesised and then assembled into core-shell materials was proposed. The same reactions were performed in the presence of oleic acid stabilise Iron oxide nanoparticles dispersed within the hexane. It was shown that by changing the reaction rate and ratio between palladium and iron oxide a continuous coating of palladium onto iron oxide microspheres can be created. The same reaction with silver, was unsuccessful and resulted in the silver particles being shed into solution, or incorporated within the iron oxide micro particle. These insights offer a new method and chemistry within flow reactors for the creation of palladium and silver nanoparticles. We use the technique to create metal coated iron oxide nanomaterials but the methodology could be easily transferred to the assembly of other materials.</div><div><br></div>


2019 ◽  
Vol 150 (2) ◽  
pp. 505-513
Author(s):  
Ádám Prekob ◽  
Gábor Muránszky ◽  
István Kocserha ◽  
Béla Fiser ◽  
Ferenc Kristály ◽  
...  

Abstract This work presents an easy, one-step procedure for catalyst preparation. A small fraction of palladium ions was reduced to Pd nanoparticles and deposited onto the surface of nitrogen-doped carbon nanotubes (N-BCNT) by acoustic cavitation using high-intensity ultrasound in aqueous phase, where N-BCNT served as a reducing agent. The formation of elemental palladium and palladium oxides were confirmed and the particle size is < 5 nm. The catalytic activity of the synthesized Pd/N-BCNT catalyst was tested in nitrobenzene hydrogenation at four different temperature (273–323 K) and 20 bar pressure. The catalyst showed high activity despite the presence of palladium oxide forms, the conversion of nitrobenzene to aniline was 98% at 323 K temperature after 40 min. The activation energy was 35.81 kJ/mol. At 303 K and 323 K temperature, N-methylaniline was formed as by-product in a small quantity (8 mmol/dm3). By decreasing the reaction temperature (at 273 K and 283 K), the reaction rate was also lower, but it was favourable for aniline selectivity, and not formed n-methylaniline. All in all, Pd/N-BCNT catalyst was successfully produced by using a one-step sonochemical method, where further activation was not necessary as the catalytic system was applicable in nitrobenzene hydrogenation. Graphic Abstract


Nano Letters ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2793-2799
Author(s):  
Jingfang Zhang ◽  
Zhenghan Di ◽  
Husheng Yan ◽  
Yuliang Zhao ◽  
Lele Li

2018 ◽  
Vol 3 (42) ◽  
pp. 11898-11901 ◽  
Author(s):  
Pierre Venturini ◽  
Solenne Fleutot ◽  
Franck Cleymand ◽  
Thomas Hauet ◽  
Jean‐Charles Dupin ◽  
...  

Carbon ◽  
2009 ◽  
Vol 47 (11) ◽  
pp. 2648-2654 ◽  
Author(s):  
Pinshi Yuan ◽  
Qingsheng Wu ◽  
Yaping Ding ◽  
Huaqiang Wu ◽  
Xiuchun Yang
Keyword(s):  

Langmuir ◽  
2018 ◽  
Vol 34 (47) ◽  
pp. 14342-14346 ◽  
Author(s):  
Xiaole Hu ◽  
Chan-Jin Kim ◽  
Shine K. Albert ◽  
So-Jung Park

2017 ◽  
Vol 13 ◽  
pp. 120-126 ◽  
Author(s):  
Christian H Hornung ◽  
Miguel Á Álvarez-Diéguez ◽  
Thomas M Kohl ◽  
John Tsanaktsidis

This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times.


2020 ◽  
Author(s):  
Andrew T. Lambe ◽  
Ezra C. Wood ◽  
Jordan E. Krechmer ◽  
Francesca Majluf ◽  
Leah R. Williams ◽  
...  

Abstract. Oxidation flow reactors (OFRs) are an emerging tool for studying the formation and oxidative aging of organic aerosols and other applications. The majority of OFR studies to date involved generation of the hydroxyl radical (OH) to mimic daytime oxidative aging processes. On the other hand, use of the nitrate radical (NO3) in modern OFRs to mimic nighttime oxidative aging processes has been limited due to the complexity of conventional techniques that are used to generate NO3. Here, we present a new method that uses a laminar flow reactor (LFR) to continuously generate dinitrogen pentoxide (N2O5) in the gas phase at room temperature from the NO2 + O3 and NO2 + NO3 reactions. The N2O5 is then injected into a dark Potential Aerosol Mass OFR and decomposes to generate NO3; hereafter, this method is referred to as OFR-iN2O5 (i = injected). To assess the applicability of the OFR-iN2O5 method towards different chemical systems, we present experimental and model characterization of the integrated NO3 exposure, NO3:O3, NO2:NO3, and NO2:O2 as a function of LFR and OFR conditions. These parameters were used to investigate the fate of representative organic peroxy radicals (RO2) and aromatic alkyl radicals generated from volatile organic compound (VOC) + NO3 reactions, and VOCs that are reactive towards both O3 and NO3. Finally, we demonstrate the OFR-iN2O5 method by generating and characterizing secondary organic aerosol from the β-pinene + NO3 reaction.


Sign in / Sign up

Export Citation Format

Share Document