Extension of Frozen Natural Orbital Approximation to Open-Shell References: Theory, Implementation, and Application to Single-Molecule Magnets

Author(s):  
Pavel Pokhilko ◽  
Daniil Izmodenov ◽  
Anna I. Krylov

Natural orbitals are often used in quantum chemistry to achieve a more compact representation of correlated wave-functions. Using natural orbitals computed as eigenstates of the virtual-virtual block of the state density matrix instead of the canonical Hartree-Fock molecular orbitals results in smaller errors when the same fraction of virtual orbitals is frozen. This strategy, termed frozen natural orbitals (FNO) approach, has been successfully used to reduce the cost of state-specific coupled-cluster (CC) calculations, such as ground-state CC, as well as some multi-state methods, i.e., EOM-IP-CC (equation-of-motion CC method for ionization potentials). This contribution extends the FNO approach to the EOM-SF-CC ansatz (EOM-CC with spin-flip), which has been developed to describe certain multi-configurational wave-functions within the single-reference framework. In contrast to EOM-IP-CCSD, which describes open-shell target states by using a closed-shell reference, EOM-SF-CCSD relies on high-spin open-shell references (triplets, quartets, etc). Consequently, straightforward application of FNOs computed for an open-shell reference leads to an erratic behavior of the EOM-SF-CC energies and properties, which can be attributed to an inconsistent truncation of the α and β orbital spaces. A general solution to problems arising in the EOM-CC calculations utilizing open-shell references, termed OSFNO (open-shell FNO), is proposed. The OSFNO algo-rithm first identifies corresponding orbitals by means of singular value decomposition (SVD) of the overlap matrix of the α and β molecular orbitals and determines virtual orbitals corresponding to the singly occupied space. This is followed by SVD of the singlet part of the state density matrix in the remaining virtual orbital subspace. The so-computed FNOs preserve the spin purity of the open-shell orbital subspace to the extent allowed by the original reference thus facilitating a safe truncation of the virtual space. The performance of the OSFNO approximation in combination with different choices of reference orbitals is benchmarked for a set of diradicals and triradicals. For a set of di-copper single-molecule magnets, a conservative truncation criterion corresponding to a two-fold reduction of the virtual space in a triple-zeta basis leads to errors of 5–18 cm<sup>-1</sup> in the singlet–triplet gaps and errors of ∼2-3 cm<sup>-1</sup> in the spin–orbit coupling constants.

2019 ◽  
Author(s):  
Pavel Pokhilko ◽  
Daniil Izmodenov ◽  
Anna I. Krylov

Natural orbitals are often used in quantum chemistry to achieve a more compact representation of correlated wave-functions. Using natural orbitals computed as eigenstates of the virtual-virtual block of the state density matrix instead of the canonical Hartree-Fock molecular orbitals results in smaller errors when the same fraction of virtual orbitals is frozen. This strategy, termed frozen natural orbitals (FNO) approach, has been successfully used to reduce the cost of state-specific coupled-cluster (CC) calculations, such as ground-state CC, as well as some multi-state methods, i.e., EOM-IP-CC (equation-of-motion CC method for ionization potentials). This contribution extends the FNO approach to the EOM-SF-CC ansatz (EOM-CC with spin-flip), which has been developed to describe certain multi-configurational wave-functions within the single-reference framework. In contrast to EOM-IP-CCSD, which describes open-shell target states by using a closed-shell reference, EOM-SF-CCSD relies on high-spin open-shell references (triplets, quartets, etc). Consequently, straightforward application of FNOs computed for an open-shell reference leads to an erratic behavior of the EOM-SF-CC energies and properties, which can be attributed to an inconsistent truncation of the α and β orbital spaces. A general solution to problems arising in the EOM-CC calculations utilizing open-shell references, termed OSFNO (open-shell FNO), is proposed. The OSFNO algo-rithm first identifies corresponding orbitals by means of singular value decomposition (SVD) of the overlap matrix of the α and β molecular orbitals and determines virtual orbitals corresponding to the singly occupied space. This is followed by SVD of the singlet part of the state density matrix in the remaining virtual orbital subspace. The so-computed FNOs preserve the spin purity of the open-shell orbital subspace to the extent allowed by the original reference thus facilitating a safe truncation of the virtual space. The performance of the OSFNO approximation in combination with different choices of reference orbitals is benchmarked for a set of diradicals and triradicals. For a set of di-copper single-molecule magnets, a conservative truncation criterion corresponding to a two-fold reduction of the virtual space in a triple-zeta basis leads to errors of 5–18 cm<sup>-1</sup> in the singlet–triplet gaps and errors of ∼2-3 cm<sup>-1</sup> in the spin–orbit coupling constants.


The theory of isoelectronic sequences of atoms has been developed as a perturbation theory and is extended here to the calculation of the first-order density matrix. It is shown that the calculation of the first-order contribution to this matrix can be reduced to the solution of a number of one-electron equations. These equations have been solved for the helium ground state, the helium 3 S state and the lithium ground state. From the density matrix, mean values of one-electron operators can be derived by integration. A variety of these mean values is quoted and the significance of the stable values discussed. From the density matrix the natural orbitals can be derived and these are found to be identical with the unrestricted molecular orbitals to terms of zero and first order.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350047
Author(s):  
V. P. PSONIS ◽  
Ch. C. MOUSTAKIDIS ◽  
S. E. MASSEN

The natural orbitals (NOs) and natural occupation numbers (NON) of various N = Z, sp and sd shell nuclei are calculated by applying a correlated one-body density matrix (OBDM). The correlated density matrix has been evaluated by considering central correlations of Jastrow type and an approximation named factor cluster expansion. The correlation effects on NOs, NON and the Fermi sea depletion (FSD) are discussed and analyzed. In addition, an approximate expression for the correlated OBDM of the nuclear matter has been used for the evaluation of the relative momentum distribution and FSD. We found that the value of FSD is higher in closed shell nuclei compared to open shell ones and it is lower compared to the case of nuclear matter. This statement could be confirmed by relevant experimental studies.


1981 ◽  
Vol 59 (10) ◽  
pp. 1552-1556
Author(s):  
F. W. Birss ◽  
W. den Hertog

The concept of rational orbitals is introduced, based upon finding that pair of orbitals which yield the single configuration function which maximally overlaps with a configuration interaction wave function. They are simply obtained from the natural orbitals by an elementary orthogonal transformation and are more appropriate than natural orbitals to analysis of functions for open-shell states. The CI wave functions of a number of lS states of helium are analyzed and the nature of the rational orbitals investigated.


2020 ◽  
Author(s):  
Stanislav Avdoshenko ◽  
Rajyavardhan Ray

With single-molecule magnets research on the rise as a result of recent advantages in the field, like remarkable high blocking temperatures up to 60 Kelvin [Nature, 548, 439, 2017], gigantic coercivity up to 80 Tesla [Nat Commun., 10, 571, 2019], magnetization stability in the thin films, further applications are seriously in the scope. The possible venue here is to develop a theory of magnetic moment manipulation and control at the microscopic level. Theory of optimal control in quantum dynamics in complex systems is well-developed. For example, the uses of density matrix techniques have been well summarized already in the early ‘60s by Fano, Haar, and many others. Thus, in many respects, the task is to reframe that research into the language of the problem at hand, and into familiar terms for the community. Recently, it was already proven the Redfield reduced density matrix techniques are applicable for slow-relaxing single-molecule magnets [Nat Commun., 8, 14620, 2017]. In our recent contribution[PCCP,20, 11656, 2018], we have outlined the use of Lindblad dynamics in combination with a few axioms in the rationalization of the relaxation behavior of single-molecule magnets. In this report we put this approach in the context of the magentodynamics theory, showing the close connection to the Landau-Lifshitz-Gilbert model and presenting further elaboration for the proposed method.


2020 ◽  
Author(s):  
Stanislav Avdoshenko ◽  
Rajyavardhan Ray

With single-molecule magnets research on the rise as a result of recent advantages in the field, like remarkable high blocking temperatures up to 60 Kelvin [Nature, 548, 439, 2017], gigantic coercivity up to 80 Tesla [Nat Commun., 10, 571, 2019], magnetization stability in the thin films, further applications are seriously in the scope. The possible venue here is to develop a theory of magnetic moment manipulation and control at the microscopic level. Theory of optimal control in quantum dynamics in complex systems is well-developed. For example, the uses of density matrix techniques have been well summarized already in the early ‘60s by Fano, Haar, and many others. Thus, in many respects, the task is to reframe that research into the language of the problem at hand, and into familiar terms for the community. Recently, it was already proven the Redfield reduced density matrix techniques are applicable for slow-relaxing single-molecule magnets [Nat Commun., 8, 14620, 2017]. In our recent contribution[PCCP,20, 11656, 2018], we have outlined the use of Lindblad dynamics in combination with a few axioms in the rationalization of the relaxation behavior of single-molecule magnets. In this report we put this approach in the context of the magentodynamics theory, showing the close connection to the Landau-Lifshitz-Gilbert model and presenting further elaboration for the proposed method.


2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Jörg Schwöbel ◽  
Yingshuang Fu ◽  
Jens Brede ◽  
Andrew Dilullo ◽  
Germar Hoffmann ◽  
...  

2019 ◽  
Author(s):  
Guo-Zhang Huang ◽  
Ze-Yu Ruan ◽  
Jie-Yu Zheng ◽  
Yan-Cong Chen ◽  
Si-Guo Wu ◽  
...  

<p><a></a>Controlling molecular magnetic anisotropy via structural engineering is delicate and fascinating, especially for single-molecule magnets (SMMs). Herein a family of dysprosium single-ion magnets (SIMs) sitting in pentagonal bipyramid geometry have been synthesized with the variable-size terminal ligands and counter anions, through which the subtle coordination geometry of Dy(III) can be finely tuned based on the size effect. The effective energy barrier (Ueff) successfully increases from 439 K to 632 K and the magnetic hysteresis temperature (under a 200 Oe/s sweep rate) raises from 11 K to 24 K. Based on the crystal-field theory, a semi-quantitative magneto-structural correlation deducing experimentally for the first time is revealed that the Ueff is linearly proportional to the structural-related value S2<sup>0</sup> corresponding to the axial coordination bond lengths and the bond angles. Through the evaluation of the remanent magnetization from hysteresis, quantum tunneling of magnetization (QTM) is found to exhibit negative correlation with the structural-related value S<sub>tun</sub> corresponding to the axial coordination bond angles.<br></p>


2018 ◽  
Author(s):  
Marcus J. Giansiracusa ◽  
Andreas Kostopoulos ◽  
George F. S. Whitehead ◽  
David Collison ◽  
Floriana Tuna ◽  
...  

We report a six coordinate DyIII single-molecule magnet<br>(SMM) with an energy barrier of 1110 K for thermal relaxation of<br>magnetization. The sample shows no retention of magnetization<br>even at 2 K and this led us to find a good correlation between the<br>blocking temperature and the Raman relaxation regime for SMMs.<br>The key parameter is the relaxation time (𝜏<sub>switch</sub>) at the point where<br>the Raman relaxation mechanism becomes more important than<br>Orbach.


Sign in / Sign up

Export Citation Format

Share Document