scholarly journals Cooperative and Synchronized Rotation in Motorized Porous Frameworks: Impact on Local and Global Transport Properties of Confined Fluids

Author(s):  
Jack D. Evans ◽  
Simon Krause ◽  
Ben L. Feringa

<div>Molecules in gas and liquid states, as well as in solution, exhibit significant and random Brownian motion. Molecules in the solid-state, although strongly immobilized, can still exhibit significant intramolecular dynamics. However, in most framework materials, these intramolecular dynamics are driven by temperature, and therefore are neither controlled nor spatially or temporarily aligned. In recent years, several examples of molecular machines that allow for a stimuli-responsive control of dynamical motion, such as rotation, have been reported.</div><div><br></div><div>In this contribution, we investigate the local and global properties of a Lennard-Jones (LJ) fluid surrounding a molecular motor and consider the influence of cooperative and non-directional rotation for a molecular motor-containing pore system. This study uses classical molecular dynamics simulations to describe a minimal model, which was developed to resemble known molecular motors. The properties of an LJ liquid surrounding an isolated molecular mo-tor remain mostly unaffected by the introduced rotation. We then considered an arrangement of motors within a one-dimensional pore. Changes in diffusivity for pore sizes approaching the length of the rotor were observed, resulting from rotation of the motors. We also considered the influence of cooperative motor directionality on the directional transport properties of this con-fined fluid. Importantly, we discovered that specific unidirectional rotation of altitudinal motors can produce directed diffusion.</div><div><br></div><div>This study provides an essential insight into molecular machine-containing frameworks, highlighting the specific structural arrangements that can produce directional mass transport.</div>

2020 ◽  
Author(s):  
Jack D. Evans ◽  
Simon Krause ◽  
Ben L. Feringa

<div>Molecules in gas and liquid states, as well as in solution, exhibit significant and random Brownian motion. Molecules in the solid-state, although strongly immobilized, can still exhibit significant intramolecular dynamics. However, in most framework materials, these intramolecular dynamics are driven by temperature, and therefore are neither controlled nor spatially or temporarily aligned. In recent years, several examples of molecular machines that allow for a stimuli-responsive control of dynamical motion, such as rotation, have been reported.</div><div><br></div><div>In this contribution, we investigate the local and global properties of a Lennard-Jones (LJ) fluid surrounding a molecular motor and consider the influence of cooperative and non-directional rotation for a molecular motor-containing pore system. This study uses classical molecular dynamics simulations to describe a minimal model, which was developed to resemble known molecular motors. The properties of an LJ liquid surrounding an isolated molecular mo-tor remain mostly unaffected by the introduced rotation. We then considered an arrangement of motors within a one-dimensional pore. Changes in diffusivity for pore sizes approaching the length of the rotor were observed, resulting from rotation of the motors. We also considered the influence of cooperative motor directionality on the directional transport properties of this con-fined fluid. Importantly, we discovered that specific unidirectional rotation of altitudinal motors can produce directed diffusion.</div><div><br></div><div>This study provides an essential insight into molecular machine-containing frameworks, highlighting the specific structural arrangements that can produce directional mass transport.</div>


Author(s):  
Jack D. Evans ◽  
Simon Krause ◽  
Ben L. Feringa

Simulations reveal the influence of rotating molecular motors and the importance of orientation and directionality for altering the transport properties of fluids. This has outlined that motors with specific rotation can generate directed diffusion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


2021 ◽  
Vol 22 (13) ◽  
pp. 6709
Author(s):  
Xiao-Xuan Shi ◽  
Peng-Ye Wang ◽  
Hong Chen ◽  
Ping Xie

The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.


2021 ◽  
Vol 23 (14) ◽  
pp. 8525-8540
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

Ground-state and excited-state molecular dynamics simulations shed light on the rotation mechanism of small, light-driven molecular motors and predict motor performance. How fast can they rotate; how much torque and power can they generate?


Sign in / Sign up

Export Citation Format

Share Document