scholarly journals A Simple Approach to Bulk Bioinspired Tough Ceramics

Author(s):  
Hassan Saad ◽  
Kaoutar Radi ◽  
Thierry Douillard ◽  
David Jauffres ◽  
Christophe Martin ◽  
...  

The development of damage-resistant structural materials that can withstand harsh environments is a major issue in materials science and engineering. Bioinspired brick-and-mortar designs have recently demonstrated a range of interesting mechanical properties in proof-of-concept studies. However, reproducibility and scalability issues associated with the actual processing routes have impeded further developments and industrialization of such materials. Here we demonstrate a simple approach based on uniaxial pressing and field assisted sintering of commercially available raw materials to process bioinspired ceramic/ceramic composites of larger thickness than previous approaches, with a sample thickness up to 1 cm. The ceramic composite retains the strength typical of dense alumina (430 ± 30 MPa) while keeping the excellent damage resistance demonstrated previously at the millimeter scale with a crack initiation toughness of 6.6 MPa.m 1/2 and fracture toughness up to 17.6 MPa.m 1/2. These results validate the potential of these all-ceramic composites, previously demonstrated at lab scale only, and could enable their optimization, scale-up, and industrialization.

2020 ◽  
Author(s):  
Hassan Saad ◽  
Kaoutar Radi ◽  
Thierry Douillard ◽  
David Jauffres ◽  
Christophe Martin ◽  
...  

The development of damage-resistant structural materials that can withstand harsh environments is a major issue in materials science and engineering. Bioinspired brick-and-mortar designs have recently demonstrated a range of interesting mechanical properties in proof-of-concept studies. However, reproducibility and scalability issues associated with the actual processing routes have impeded further developments and industrialization of such materials. Here we demonstrate a simple approach based on uniaxial pressing and field assisted sintering of commercially available raw materials to process bioinspired ceramic/ceramic composites of larger thickness than previous approaches, with a sample thickness up to 1 cm. The ceramic composite retains the strength typical of dense alumina (430 ± 30 MPa) while keeping the excellent damage resistance demonstrated previously at the millimeter scale with a crack initiation toughness of 6.6 MPa.m 1/2 and fracture toughness up to 17.6 MPa.m 1/2. These results validate the potential of these all-ceramic composites, previously demonstrated at lab scale only, and could enable their optimization, scale-up, and industrialization.


Author(s):  
L. S. Chumbley ◽  
M. Meyer ◽  
K. Fredrickson ◽  
F.C. Laabs

The development of a scanning electron microscope (SEM) suitable for instructional purposes has created a large number of outreach opportunities for the Materials Science and Engineering (MSE) Department at Iowa State University. Several collaborative efforts are presently underway with local schools and the Department of Curriculum and Instruction (C&I) at ISU to bring SEM technology into the classroom in a near live-time, interactive manner. The SEM laboratory is shown in Figure 1.Interactions between the laboratory and the classroom use inexpensive digital cameras and shareware called CU-SeeMe, Figure 2. Developed by Cornell University and available over the internet, CUSeeMe provides inexpensive video conferencing capabilities. The software allows video and audio signals from Quikcam™ cameras to be sent and received between computers. A reflector site has been established in the MSE department that allows eight different computers to be interconnected simultaneously. This arrangement allows us to demonstrate SEM principles in the classroom. An Apple Macintosh has been configured to allow the SEM image to be seen using CU-SeeMe.


2000 ◽  
Vol 632 ◽  
Author(s):  
Eric Werwa

ABSTRACTA review of the educational literature on naive concepts about principles of chemistry and physics and surveys of science museum visitors reveal that people of all ages have robust alternative notions about the nature of atoms, matter, and bonding that persist despite formal science education experiences. Some confusion arises from the profound differences in the way that scientists and the lay public use terms such as materials, metals, liquids, models, function, matter, and bonding. Many models that eloquently articulate arrangements of atoms and molecules to informed scientists are not widely understood by lay people and may promote naive notions among the public. Shifts from one type of atomic model to another and changes in size scales are particularly confusing to learners. People's abilities to describe and understand the properties of materials are largely based on tangible experiences, and much of what students learn in school does not help them interpret their encounters with materials and phenomena in everyday life. Identification of these challenges will help educators better convey the principles of materials science and engineering to students, and will be particularly beneficial in the design of the Materials MicroWorld traveling museum exhibit.


2021 ◽  
Vol 22 (9) ◽  
pp. 4543
Author(s):  
Xuan-Hung Pham ◽  
Seung-min Park ◽  
Bong-Hyun Jun

Nano/micro particles are considered to be the most valuable and important functional materials in the field of materials science and engineering [...]


2012 ◽  
Vol 68 (11-12) ◽  
pp. 405-409 ◽  
Author(s):  
V. S. Bakunov ◽  
A. R. Murzakova ◽  
R. U. Shayakhmetov ◽  
L. V. Yakupova

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik Poloni ◽  
Florian Bouville ◽  
Christopher H. Dreimol ◽  
Tobias P. Niebel ◽  
Thomas Weber ◽  
...  

AbstractThe brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the “mortar” phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities. Such metal-ceramic composites are prepared through the sol–gel deposition of iron-based coatings on alumina platelets and the magnetically-driven assembly of the pre-coated platelets into nacre-like architectures, followed by pressure-assisted densification at 1450 °C. With the help of state-of-the-art characterization techniques, we show that this processing route leads to lightweight inorganic structures that display outstanding fracture resistance, show noticeable magnetization and are amenable to fast induction heating. Materials with this set of properties might find use in transport, aerospace and robotic applications that require weight minimization combined with magnetic, electrical or thermal functionalities.


Sign in / Sign up

Export Citation Format

Share Document