scholarly journals On the Basis Set Selection for Calculations of Core-Level States: Different Strategies to Balance Cost and Accuracy

Author(s):  
Ronit Sarangi ◽  
Marta L. Vidal ◽  
Sonia Coriani ◽  
Anna Krylov

<p>We present a study on basis set effect in correlated calculations of core-level states. While it is well recognized that the core-level states require using more extensive basis sets than their valence counterparts, the standard strategy has been to use large contracted basis sets, such as the cc-pVXZ or cc-pCXZ series. Building upon the ideas of Besley, Gilbert, and Gill [J. Chem. Phys. 130, 124308 (2009)], we show that much more effective strategy is to use uncontracted bases, such as core or fully uncontracted Pople's basis. The physical grounds behind this approach are explained and illustrated by numerical results. We also discuss other cost-saving strategies, such as virtual space truncation and using mixed precision execution.</p>

2020 ◽  
Author(s):  
Ronit Sarangi ◽  
Marta L. Vidal ◽  
Sonia Coriani ◽  
Anna Krylov

<p>We present a study on basis set effect in correlated calculations of core-level states. While it is well recognized that the core-level states require using more extensive basis sets than their valence counterparts, the standard strategy has been to use large contracted basis sets, such as the cc-pVXZ or cc-pCXZ series. Building upon the ideas of Besley, Gilbert, and Gill [J. Chem. Phys. 130, 124308 (2009)], we show that much more effective strategy is to use uncontracted bases, such as core or fully uncontracted Pople's basis. The physical grounds behind this approach are explained and illustrated by numerical results. We also discuss other cost-saving strategies, such as virtual space truncation and using mixed precision execution.</p>


2011 ◽  
Vol 76 (4) ◽  
pp. 327-341 ◽  
Author(s):  
Vladimír Špirko ◽  
Xiangzhu Li ◽  
Josef Paldus

Recently generated ground state potential energy curves (PECs) for the nitrogen molecule, as obtained with the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR-CCSD), and its version corrected for the secondary triples RMR-CCSD(T), using cc-pVXZ basis sets with X = D, T, and Q, as well as the extrapolated complete basis set (cbs) limit (X. Li and J. Paldus: J. Chem. Phys. 2008, 129, 054104), are compared with both the highly accurate theoretical configuration interaction PEC of Gdanitz (Chem. Phys. Lett. 1998, 283, 253) and analytic PECs obtained by fitting an extensive set of experimental data (R. J. Le Roy et al.: J. Chem. Phys. 2006, 125, 164310). These results are analyzed using a morphing procedure based on the reduced potential curve (RPC) method of Jenč. It is found that an RPC fit of both theoretical potentials can be achieved with only a few parameters. The RMR PECs are found to provide an excellent description of experimentally available vibrational levels, but significantly deviate from those of Gdanitz’s PEC for highly stretched geometries, yet still do provide a qualitatively correct PECs that lie within the region delimited by Le Roy’s analytical PECs.


2020 ◽  
Vol 118 (19-20) ◽  
pp. e1769872 ◽  
Author(s):  
Ronit Sarangi ◽  
Marta L. Vidal ◽  
Sonia Coriani ◽  
Anna I. Krylov
Keyword(s):  

2003 ◽  
Vol 68 (3) ◽  
pp. 463-488 ◽  
Author(s):  
Małgorzata Jeziorska ◽  
Robert Bukowski ◽  
Wojciech Cencek ◽  
Michał Jaszuński ◽  
Bogumił Jeziorski ◽  
...  

Helium dimer interaction energies, Eint, obtained recently using the Gaussian geminal implementation of the coupled cluster doubles (CCD) and singles and doubles (CCSD) theory, were employed to evaluate the performance of conventional orbital calculations applying the correlation-consistent polarized valence X-tuple zeta (cc-pVXZ) bases, with X ranging from 4 to 7, and very large sets of bond functions. We found that while the bond functions improve dramatically the convergence of the doubles and triples contribution to the interaction energy, these functions are inefficient or even counterproductive in predicting the effect of the single excitations and the small contribution beyond the CCSD(T) (CCSD model with noniterative account of triple excitations) level of electronic structure theory. We also found that bond functions are very effective in extrapolation techniques. Using simple two-point extrapolations based on the single-power laws X-2 and X-3 for the basis set truncation error, the Gaussian geminal CCSD result for Eint, equal to -9.150 ± 0.001 K at the equilibrium interatomic distance of R = 5.6 bohr, could be reproduced with an error of 2-3 mK. Linear extrapolation of the functional dependence of the CCSD energy on the value of the second-order Møller-Plesset energy and the use of the known accurate value of the latter leads to an even smaller error. Using these extrapolation techniques with basis sets up to doubly augmented septuple-zeta quality and containing large sets of bond functions, we estimated the contribution of triple excitations within the CCSD(T) model to be -1.535 ± 0.002 K, with the error bars reflecting the spread of extrapolated results. The contribution beyond the CCSD(T) model, estimated from full configuration interaction (FCI) calculations with up to 255 orbitals, amounts to -0.323 ± 0.005 K. Combining the Gaussian geminal value of the CCSD energy with the orbital estimations of the CCSD(T) and FCI contributions, we found that Eint = -11.008 ± 0.008 K. This value is consistent with recent high-level orbital computations (van Mourik T., Dunning T. H.: J. Chem. Phys. 1999, 111, 9246; Klopper W.: J. Chem. Phys. 2001, 115, 761) but has substantially tighter error bounds. It differs somewhat, however, from the value of -10.98 ± 0.02 K obtained recently from the "exact" quantum Monte Carlo calculations (Anderson J. B.: J. Chem. Phys. 2001, 115, 4546).


2018 ◽  
Author(s):  
Nitai Sylvetsky ◽  
Gershom Martin

The inner-shell correlation contributions to the total atomization energies of the W4-17 computational thermochemistry benchmark have been determined at the CCSD(T) level near the basis set limit using several families of core correlation basis sets, such as aug-cc-pCVnZ (n=3-6), aug-cc-pwCVnZ (n=3-5), and nZaPa-CV (n=3-5). The three families of basis sets agree very well with each other (0.01 kcal/mol RMS) when extrapolating from the two largest available basis sets: however, there are considerable differences in convergence behavior for the smaller basis sets. nZaPa-CV is superior for the core-core term and awCVnZ for the core-valence term. While the aug-cc-pwCV(T+d)Z basis set of Yockel and Wilson is superior to aug-cc-pwCVTZ, further extension of this family proved unproductive. The best compromise between accuracy and computational cost, in the context of high-accuracy computational thermochemistry methods such as W4 theory, is CCSD(T)/awCV{T,Q}Z, where the {T,Q} notation stands for extrapolation from the awCVTZ and awCVQZ basis set pair. For lower-cost calculations, a previously proposed combination of CCSD-F12b/cc-pCVTZ-F12 and CCSD(T)/pwCVTZ(no f) appears to ‘give the best bang for the buck’. While core-valence correlation accounts for the lion’s share of the inner shell contribution in first-row molecules, for second-row molecules core-core contributions may become important, particularly in systems like P<sub>4</sub>and S<sub>4</sub>with multiple adjacent second-row atoms.<div>[In memory of Dieter Cremer, 1944-2017]</div>


2019 ◽  
Author(s):  
Emmanuel Giner ◽  
Anthony Scemama ◽  
Julien Toulouse ◽  
Pierre-Francois Loos

<p>By combining extrapolated selected configuration interaction (sCI) energies obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm with the recently proposed short-range density-functional correction for basis-set incompleteness [Giner et al., J. Chem. Phys. 2018, 149, 194301], we show that one can get chemically accurate vertical and adiabatic excitation energies with, typically, augmented double-ζ basis sets. We illustrate the present approach on various types of excited states (valence, Rydberg, and double excitations) in several small organic molecules (methylene, water, ammonia, carbon dimer and ethylene). The present study clearly evidences that special care has to be taken with very diffuse excited states where the present correction does not catch the radial incompleteness of the one-electron basis set.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Eric J. Bylaska ◽  
Duo Song ◽  
Nicholas P. Bauman ◽  
Karol Kowalski ◽  
Daniel Claudino ◽  
...  

For many-body methods such as MCSCF and CASSCF, in which the number of one-electron orbitals is optimized and independent of the basis set used, there are no problems with using plane-wave basis sets. However, for methods currently used in quantum computing such as select configuration interaction (CI) and coupled cluster (CC) methods, it is necessary to have a virtual space that is able to capture a significant amount of electron-electron correlation in the system. The virtual orbitals in a pseudopotential plane-wave Hartree–Fock calculation, because of Coulomb repulsion, are often scattering states that interact very weakly with the filled orbitals. As a result, very little correlation energy is captured from them. The use of virtual spaces derived from the one-electron operators has also been tried, and while some correlations are captured, the amount is quite low. To overcome these limitations, we have been developing new classes of algorithms to define virtual spaces by optimizing orbitals from small pairwise CI Hamiltonians, which we term as correlation optimized virtual orbitals with the abbreviation COVOs. With these procedures, we have been able to derive virtual spaces, containing only a few orbitals, which are able to capture a significant amount of correlation. The focus in this manuscript is on using these derived basis sets to target full CI (FCI) quality results for H2 on near-term quantum computers. However, the initial results for this approach were promising. We were able to obtain good agreement with FCI/cc-pVTZ results for this system with just 4 virtual orbitals, using both FCI and quantum simulations. The quality of the results using COVOs suggests that it may be possible to use them in other many-body approaches, including coupled cluster and Møller–Plesset perturbation theories, and open up the door to many-body calculations for pseudopotential plane-wave basis set methods.


2018 ◽  
Author(s):  
Nitai Sylvetsky ◽  
Gershom Martin

The inner-shell correlation contributions to the total atomization energies of the W4-17 computational thermochemistry benchmark have been determined at the CCSD(T) level near the basis set limit using several families of core correlation basis sets, such as aug-cc-pCVnZ (n=3-6), aug-cc-pwCVnZ (n=3-5), and nZaPa-CV (n=3-5). The three families of basis sets agree very well with each other (0.01 kcal/mol RMS) when extrapolating from the two largest available basis sets: however, there are considerable differences in convergence behavior for the smaller basis sets. nZaPa-CV is superior for the core-core term and awCVnZ for the core-valence term. While the aug-cc-pwCV(T+d)Z basis set of Yockel and Wilson is superior to aug-cc-pwCVTZ, further extension of this family proved unproductive. The best compromise between accuracy and computational cost, in the context of high-accuracy computational thermochemistry methods such as W4 theory, is CCSD(T)/awCV{T,Q}Z, where the {T,Q} notation stands for extrapolation from the awCVTZ and awCVQZ basis set pair. For lower-cost calculations, a previously proposed combination of CCSD-F12b/cc-pCVTZ-F12 and CCSD(T)/pwCVTZ(no f) appears to ‘give the best bang for the buck’. While core-valence correlation accounts for the lion’s share of the inner shell contribution in first-row molecules, for second-row molecules core-core contributions may become important, particularly in systems like P<sub>4</sub>and S<sub>4</sub>with multiple adjacent second-row atoms.<div>[In memory of Dieter Cremer, 1944-2017]</div>


2019 ◽  
Author(s):  
Emmanuel Giner ◽  
Anthony Scemama ◽  
Julien Toulouse ◽  
Pierre-Francois Loos

<p>By combining extrapolated selected configuration interaction (sCI) energies obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm with the recently proposed short-range density-functional correction for basis-set incompleteness [Giner et al., J. Chem. Phys. 2018, 149, 194301], we show that one can get chemically accurate vertical and adiabatic excitation energies with, typically, augmented double-ζ basis sets. We illustrate the present approach on various types of excited states (valence, Rydberg, and double excitations) in several small organic molecules (methylene, water, ammonia, carbon dimer and ethylene). The present study clearly evidences that special care has to be taken with very diffuse excited states where the present correction does not catch the radial incompleteness of the one-electron basis set.</p>


Sign in / Sign up

Export Citation Format

Share Document