scholarly journals Frequency Selective Phase-Optimized Recoupling for Protons in Ultra-Fast Solid-State Magic-Angle Spinning NMR

Author(s):  
Zhengfeng Zhang ◽  
Andres Oss ◽  
Mai-Liis Org ◽  
Ago Samoson ◽  
Huan Tan ◽  
...  

<p>We propose a new category of homonuclear frequency-selective recoupling methods for protons under ultra-fast MAS ranging from 40 kHz to 150 kHz. The methods, named as Selective Phase-optimized Recoupling (SPR) are simple in the form with defined phase schemes and RF amplitudes. SPR are robust to RF variations and efficient in frequency-selective recoupling. We demonstrated that SPR can provide a sensitivity gain of ~ 3 over the widely-used RFDR for selective <sup>1</sup>H<sub>N</sub>-<sup>1</sup>H<sub>N</sub> correlations under 150 kHz MAS using a protonated tripeptide N-formyl-Met-Leu-Phe (fMLF). Moreover, SPR requires small ratios (~ 0.5) of RF power with respect to MAS frequency, making it perfect to probe long-range <sup>1</sup>H-<sup>1</sup>H distance under ultra-fast MAS up to 150 kHz.</p>

2020 ◽  
Author(s):  
Zhengfeng Zhang ◽  
Andres Oss ◽  
Mai-Liis Org ◽  
Ago Samoson ◽  
Huan Tan ◽  
...  

<p>We propose a new category of homonuclear frequency-selective recoupling methods for protons under ultra-fast MAS ranging from 40 kHz to 150 kHz. The methods, named as Selective Phase-optimized Recoupling (SPR) are simple in the form with defined phase schemes and RF amplitudes. SPR are robust to RF variations and efficient in frequency-selective recoupling. We demonstrated that SPR can provide a sensitivity gain of ~ 3 over the widely-used RFDR for selective <sup>1</sup>H<sub>N</sub>-<sup>1</sup>H<sub>N</sub> correlations under 150 kHz MAS using a protonated tripeptide N-formyl-Met-Leu-Phe (fMLF). Moreover, SPR requires small ratios (~ 0.5) of RF power with respect to MAS frequency, making it perfect to probe long-range <sup>1</sup>H-<sup>1</sup>H distance under ultra-fast MAS up to 150 kHz.</p>


2021 ◽  
Author(s):  
Zhengfeng Zhang ◽  
Yongchao Su ◽  
Jun Yang

Heteronuclear correlation (HETCOR) is critical to obtain structural information in solid-state nuclear magnetic resonance (NMR). We propose novel frequency-selective Heteronuclear correlation (FS-HETCOR) experiments to selectively enhance the inter-atomic correlations of interest. FS-HETCOR relies on heteronuclear selective phase-optimized recoupling (SPRx), which is frequency-selective in heteronuclear recouping without using selective pulses. Compared to regular HETCOR, FS-HETCOR selectively enhances the desired heteronuclear correlations by a factor of up to 5 and suppresses the unwanted ones to 10% as demonstrated in 1H-19F and 1H-13C experiments under fast magic-angle spinning (MAS). Moreover, FS-HETCOR can theoretically be applied at arbitrary MAS rates by utilizing various SPRx schemes. We believe that the method will enhance the ability of solid-state NMR to probe heteronuclear structural information.


2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


2016 ◽  
Vol 4 (34) ◽  
pp. 13183-13193 ◽  
Author(s):  
Ryohei Morita ◽  
Kazuma Gotoh ◽  
Mika Fukunishi ◽  
Kei Kubota ◽  
Shinichi Komaba ◽  
...  

We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR.


Sign in / Sign up

Export Citation Format

Share Document