scholarly journals Enhanced Densification and Conduction Properties of Li5+xLa3Nb2-xZrxO12 Garnet Solid-State Electrolytes Through Zn Doping on the Nb/Zr Site

Author(s):  
Bo Dong ◽  
Linhao Li ◽  
Xiao Tao ◽  
Mark P. Stockham ◽  
Chuan Li ◽  
...  

<p>While garnet Li ion conductors are attracting considerable interest as potential solid state electrolytes for Li ion batteries, a key challenge is to improve the conductivity, which is associated with the Li content in the structure, and to overcome the challenges of sintering dense electrolyte membranes. In this work we show that Zn doping on the 16a octahedral Nb site leads to substantially improved sintering in both Li<sub>5</sub>La<sub>3</sub>Nb<sub>2</sub>O<sub>12</sub> and Li<sub>6</sub>La<sub>3</sub>ZrNbO<sub>12</sub>. As a result of the enhanced sintering, and the associated increase in Li content, the conductivities in both garnet systems were significantly enhanced on Zn doping, up to 2.1 x 10<sup>-4</sup> Scm<sup>-1</sup> at 25 <sup>o</sup>C for Li<sub>6.6</sub>La<sub>3</sub>ZrNb<sub>0.8</sub>Zn<sub>0.2</sub>O<sub>12</sub>. This doping strategy therefore represents a promising approach to improve the relative density and, hence, ionic conductivity of garnet solid state electrolyte materials for possible solid-state battery applications. </p>

2020 ◽  
Author(s):  
Bo Dong ◽  
Linhao Li ◽  
Xiao Tao ◽  
Mark P. Stockham ◽  
Chuan Li ◽  
...  

<p>While garnet Li ion conductors are attracting considerable interest as potential solid state electrolytes for Li ion batteries, a key challenge is to improve the conductivity, which is associated with the Li content in the structure, and to overcome the challenges of sintering dense electrolyte membranes. In this work we show that Zn doping on the 16a octahedral Nb site leads to substantially improved sintering in both Li<sub>5</sub>La<sub>3</sub>Nb<sub>2</sub>O<sub>12</sub> and Li<sub>6</sub>La<sub>3</sub>ZrNbO<sub>12</sub>. As a result of the enhanced sintering, and the associated increase in Li content, the conductivities in both garnet systems were significantly enhanced on Zn doping, up to 2.1 x 10<sup>-4</sup> Scm<sup>-1</sup> at 25 <sup>o</sup>C for Li<sub>6.6</sub>La<sub>3</sub>ZrNb<sub>0.8</sub>Zn<sub>0.2</sub>O<sub>12</sub>. This doping strategy therefore represents a promising approach to improve the relative density and, hence, ionic conductivity of garnet solid state electrolyte materials for possible solid-state battery applications. </p>


Author(s):  
Jingyi Wu ◽  
Lixia Yuan ◽  
Wuxing Zhang ◽  
Zhen Li ◽  
Xiaolin Xie ◽  
...  

This review summarizes the strategies to reduce the thickness of solid-state electrolytes for the fabrication of high energy-density solid-state batteries.


2014 ◽  
Vol 1679 ◽  
Author(s):  
Shiang Teng ◽  
Wei Wang ◽  
Ashutosh Tiwari

ABSTRACTThe solid state electrolyte (SSE) of Li5La3Nb2O12 (LLNO) was synthesized via a novel molten salt synthesis (MSS) method at the relatively low temperature of 900°C. The low sintering temperature prevented the loss of lithium that commonly occurs during synthesis of the SSE using conventional solid state or wet chemical reactions. Recent publications have demonstrated that preserving the Li content is critical in improving the ionic conductivity of SSEs. The LLNO in this experiment showed a high Li-ion conductivity which is comparable to other values reported for LLNO. X-ray diffraction (XRD) measurements confirmed the formation of the cubic garnet Ia-3d crystal structure. In addition, the morphology was examined by scanning electron microscopy (SEM), which showed a uniform grain size and crack-free microstructure. These results demonstrate that MSS is a powerful synthesis method to fabricate LLNO at a relatively low temperature while still achieving a high quality material.


2013 ◽  
Vol 23 (47) ◽  
pp. 5941-5951 ◽  
Author(s):  
Matthew M. Ombaba ◽  
Ruxandra Vidu ◽  
Logeeswaran Veerayah Jayaraman ◽  
Mark Triplett ◽  
Jonathan Hsu ◽  
...  

Author(s):  
Yang Yang ◽  
Jie Cui ◽  
Hui-Juan Guo ◽  
Xi Shen ◽  
Yuan Yao ◽  
...  

Intensive understanding of the Li-ion transport mechanism in solid-state-electrolytes (SSEs) is crucial for the buildup of industrially scalable solid-state batteries. Here, we report the charge distribution near the electrode/SSEs interface...


2018 ◽  
Vol 30 (39) ◽  
pp. 1800615 ◽  
Author(s):  
Meng Cheng ◽  
Yizhou Jiang ◽  
Wentao Yao ◽  
Yifei Yuan ◽  
Ramasubramonian Deivanayagam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document