scholarly journals A Non-Equilibrium Thermodynamics-Based View of the Kinetics of Autocatalytic Reactions – a Simple Illustrative Example

Author(s):  
Miloslav Pekař

Autocatalytic reactions are in a certain contrast with the linear algebra of reaction stoichiometry, on whose basis rate equations respecting the permanence of atoms are constructed. These mathematical models of chemical reactions are termed conservative.Using a non-equilibrium thermodynamics-based theory of chemical kinetics, this paper demonstrates how to properly introduce an autocatalytic step into a (conservative) rate equation. Further, rate equations based on chemical potentials or affinities are derived, and conditions for the consistency of rate equations with entropic inequality (the second law of thermodynamics) are illustrated.<br><div><br></div>

2020 ◽  
Author(s):  
Miloslav Pekař

Autocatalytic reactions are in a certain contrast with the linear algebra of reaction stoichiometry, on whose basis rate equations respecting the permanence of atoms are constructed. These mathematical models of chemical reactions are termed conservative.Using a non-equilibrium thermodynamics-based theory of chemical kinetics, this paper demonstrates how to properly introduce an autocatalytic step into a (conservative) rate equation. Further, rate equations based on chemical potentials or affinities are derived, and conditions for the consistency of rate equations with entropic inequality (the second law of thermodynamics) are illustrated.<br><div><br></div>


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 585
Author(s):  
Miloslav Pekař

Autocatalytic reactions are in certain contrast with the linear algebra of reaction stoichiometry, on which rate equations respecting the permanence of atoms are constructed. These mathematical models of chemical reactions are called conservative. Using a non-equilibrium thermodynamics-based theory of chemical kinetics, it is shown how to introduce autocatalytic step into such (conservative) rate equation properly. Further, rate equations based on chemical potentials or affinities are derived, and conditions for the consistency of rate equations with the entropic inequality (the second law of thermodynamics) are illustrated. The theory illustrated here can be viewed as a tool for verifying and generalizing traditional mass-action kinetics by means of modern non-equilibrium thermodynamics, which is able to deal also with such rather problematic cases.


2020 ◽  
Vol 45 (2) ◽  
pp. 121-132
Author(s):  
Daniel P. Sheehan

AbstractCanonical statistical mechanics hinges on two quantities, i. e., state degeneracy and the Boltzmann factor, the latter of which usually dominates thermodynamic behaviors. A recently identified phenomenon (supradegeneracy) reverses this order of dominance and predicts effects for equilibrium that are normally associated with non-equilibrium, including population inversion and steady-state particle and energy currents. This study examines two thermodynamic paradoxes that arise from supradegeneracy and proposes laboratory experiments by which they might be resolved.


Author(s):  
Elliott H. Lieb ◽  
Jakob Yngvason

In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states, we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an ‘entropy meter’. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems.


2010 ◽  
Vol 98 (3) ◽  
pp. 366a
Author(s):  
Krishnakumar Garikipati ◽  
Joseph E. Olberding ◽  
Michael Thouless ◽  
Ellen M. Arruda

1998 ◽  
Vol 59 (4) ◽  
pp. 619-627 ◽  
Author(s):  
M. de HAAN ◽  
C. D. GEORGE

An understanding of the mechanisms leading to the symmetry breaking of the dynamical description of a large system with respect to the direction of time is necessary, but not sufficient to ensure the finding of a functional of the state of the system that would satisfy the requirements placed by the Second Law of Thermodynamics upon the non-equilibrium entropy S.


2018 ◽  
Vol 33 (24) ◽  
pp. 1850137 ◽  
Author(s):  
Onur Siginc ◽  
Mustafa Salti ◽  
Hilmi Yanar ◽  
Oktay Aydogdu

Assuming the universe as a thermodynamical system, the second law of thermodynamics can be extended to another form including the sum of matter and horizon entropies, which is called the generalized second law of thermodynamics. The generalized form of the second law (GSL) is universal which means it holds both in non-equilibrium and equilibrium pictures of thermodynamics. Considering the universe is bounded by a dynamical apparent horizon, we investigate the nature of entropy function for the validity of GSL in the scalar–tensor–vector (STEVE) theory of gravity.


1975 ◽  
Vol 30 (11) ◽  
pp. 1433-1440 ◽  
Author(s):  
B. Stuke

In a system with a non spherically symmetric pressure tensor, the chemical potential of at least one substance in the system has to be a tensor of the same character as the pressure. The necessary generalization of Gibbs' fundamental equations of thermodynamics is presented. Being already of consequence for equilibrium, this extension is more important for non-equilibrium thermodynamics, in particular for the proper thermodynamic formulation of general relaxation phenomena. Reasons are given why the distinction between dynamic and thermodynamic pressure, originating from the incomplete formulation of customary thermodynamics, is erroneous. Finally a tensorial temperature is introduced which can exist under extreme non-equilibrium conditions, e.g. shock waves


Sign in / Sign up

Export Citation Format

Share Document